
 

Copyright © 2025 by authors and IBII. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). 

 

American Journal of Advanced Research, 2025, 9–1 

July. 2025, pages 01-05 

doi: 10.5281/zenodo.15870013 

http://www.ibii-us.org/Journals/AJAR/  

ISBN 2572-8849 (Online), 2572-8830 (Print) 

 

A pedagogical framework for maximizing student learning out-

comes: Readability and Reusability 

Karuppasamy, Geetha1 and Larson, Theodore1, * 

1Department of Computer Science, Oklahoma State University 

*Email: bjorn.larson@okstate.edu  

Received on 04/04/2025; revised on 07/09/2025; published on 07/11/2025  

Abstract 

In an evolving educational landscape shaped by artificial intelligence, shifting student expectations, and industry-aligned goals, the 

role of the computer science educator is undergoing fundamental change. This paper introduces a pedagogical framework based on 

two core software development principles readability and reusability framed as foundational tools for teaching programming. The 

framework fosters clarity, modularity, and transferability, guiding students to evaluate each concept through these lenses. Implemented 

in an introductory Java course, the approach led to notable improvements in student confidence and comprehension, confirmed by 

self-assessments and faculty feedback. Beyond academic gains, the model promotes professional readiness and offers a transferable 

strategy for educators across disciplines.  

 

Keywords: computer science, education, framework, pedagogy 

 

 

1 Introduction  

The relationship between professors and students has long been cen-

tered on a cooperative goal: equipping students with the skills, habits, and 

ways of thinking necessary for success in their chosen field. Two signifi-

cant trends have emerged in recent years that complicate the educator’s 

role: the accelerating adoption of AI in both academic learning (Haj-

kowicz et al., 2023) and industry (McElheran et al., 2024), and a shifting 

student mindset that views higher education as primarily a career pathway, 

rather than a space for broad intellectual development (Koseda et al., 

2024). 

These developments raise critical pedagogical questions. If students 

can access sophisticated AI tools to write or debug code, and if the per-

ceived value of education is primarily employability, what then is the role 

of the educator? What value can an instructor bring to a learning experi-

ence increasingly supplemented or replaced by technology? And what, if 

anything, distinguishes the classroom from the abundance of free or low-

cost online resources? 

While there are multiple answers to these questions in literature, we 

propose that the educator’s role now more than ever is to provide structure 

and a framework for learning. This role is not diminished by AI but made 

more urgent by it. Students now need guidance not only on what to learn 

but how to evaluate, refine, and transfer what they learn into different con-

texts. If education is shifting toward workplace readiness, then instructors 

must bring authentic industry practices into the classroom not as discon-

nected anecdotes, but as coherent pedagogical principles. 

In this paper, we present such a principle: a pedagogical framework 

grounded in two enduring and industry-relevant metrics readability and 

reusability. We suggest that these concepts, while familiar in the context 

of software development, can serve as a foundation for teaching program-

ming in a way that is both intellectually rigorous and practically aligned 

with professional standards. 

Readability and reusability are not merely technical ideals; they are 

habits of mind that shape how students write, assess, and revise code. 

When introduced early and reinforced consistently, these principles help 

students see programming not as a series of disconnected assignments, but 

as a craft that values clarity, modularity, and long-term maintainability. 

This will provide the students with a wide amount of practice in the pro-

cess, and a meta-narrative of how and why decisions made by expert prac-

titioners are made in that way in a manner that is both pedagogically and 

practically sound. 

In the sections that follow, we describe the development of this 

framework, its implementation in a first-year computer science course, 

and the feedback from students and instructors who engaged in it. We ar-

gue that such an approach not only improves student learning outcomes 

but also strengthens their ability to self-evaluate and adapt in an evolving 

technological landscape. 

2 Frameworks and Models 

As has been previously articulated (e.g., Larson & Crouse, 2022), a 

conceptual model is an attempt to provide a discretized and sensible model 

for a continuous and overly chaotic real phenomenon.  It does not claim 

http://www.ibii-us.org/Journals/AJAR/


Karuppasamy and Larson / American Journal of Advanced Research 2025 9 (1) 1-5 

2 

 

that all frameworks are exact representations of natural or social phenom-

ena, instead it provides a communicative framework. A well-designed 

model helps individuals focus their decision-making by narrowing the 

scope of possibilities and offering a framework for reasoning within con-

straints. 

This communicative function is particularly relevant in education. 

Educators are not merely conveying content, they are conveying expertise, 

and expertise is, by its nature, complex a to the novice. Framing that ex-

pertise within a discretized model makes it more ideal. It transforms a do-

main's complexity into actionable insight. In this case, the distinction be-

tween a “model” and a “framework” is specious. However, for the pur-

poses of this discussion, we use the term framework to emphasize its pre-

scriptive intent. While a model may explain how things are, a framework 

helps shape what actions should be taken within a pedagogical setting. 

An important part of using any framework, especially in education, 

is transparency about its limitations. Students should be made aware that 

frameworks are tools. They are designed to be helpful until they are no 

longer sufficient. As a bit of deliberate self-parody, we might say: a frame-

work is like a simile—useful only until it’s not. 

3 Readability and Reusability 

As a result, we specifically recommend that computer science students be 

introduced to the principles of readability and reusability from their very 

first programming course, and that these concepts be reinforced consist-

ently throughout their academic journey. Rather than treating readability 

and reusability as peripheral skills or optional best practices, we argue that 

these two metrics should serve as the lens through which all code is eval-

uated. They should be embedded not merely as outcomes of instruction, 

but as the mechanisms by which learning objectives are effectively real-

ized. 

              

Fig. 1.  A Holistic Model for Teaching Readable and Reusable Code in Context. 

 

Figure 1 illustrates the integration of three interdependent ele-

ments Readability, Reusability, and Teaching Approach within the context 

of computer science education. The triangular structure emphasizes their 

reciprocal relationships, all informed by underlying situational factors, 

such as institutional goals, student backgrounds, and curriculum con-

straints. 

 Readability refers to the clarity and ease of understanding in code. 

It is enhanced through teaching practices that foster readable 

thinking patterns and coding conventions. 

 Reusability is defined as the ability to apply code across different 

contexts or assignments. It is supported by good readability and 

strengthened through assignment design that promotes modular, 

extensible solutions. 

 Teaching Approach encompasses the sequencing of topics, structur-

ing of assignments, and framing of instruction. It acts as the de-

livery mechanism that weaves readability and reusability into the 

student experience. 

Each arrow reflects a bidirectional influence. For example, teaching 

fosters readability, while readable code improves a student's understand-

ing of taught material. Similarly, readability enhances reusability, and the 

push for reusable design informs how topics are presented and practiced. 

At the base of the framework lies Situational Factors in CS Education 

representing the constraints and opportunities that influence how instruc-

tors can integrate these principles into their courses. 

This framework provides several critical benefits: 

 Simplicity and Memorability: The terms are accessible and intuitive, 

making them easy for students to recall and apply consistently. 

 Pedagogical Flexibility: The concepts are broad enough to apply 

across diverse programming topics from syntax and control struc-

tures to algorithms and software architecture yet focused enough to 

provide meaningful guidance. 

 Instructional Interpretability: Instructors can interpret and apply the 

framework in ways that align with their own teaching styles and 

course objectives, while maintaining a shared vocabulary across sec-

tions or departments. 

 Industry Alignment: Readability and reusability are well-established 

standards in professional software development. By internalizing 

these values, students gain not only academic proficiency but also 

professional readiness. 

 

By framing all instructional content around these two principles, edu-

cators can help students develop durable coding habits that scale with 

complexity and remain relevant beyond the classroom.         

3.1 Readability 

Code readability refers to the degree to which source code can be 

easily understood by humans, a factor that directly impacts collaboration, 

maintainability, and long-term project success (Buse & Weimer, 2010). 

While readability is often subjective, it is influenced by a variety of struc-

tural and stylistic choices. These include naming conventions, code length, 

indentation, nesting levels, and even the presence or absence of 

whitespace (Rahman & Roy, 2018). Readability is not a one-size-fits-all 

metric, but rather a constellation of best practices that help reduce cogni-

tive load when reviewing code. 

We categorize code readability into three primary dimensions: 

(1)      Structural Elements: These include aspects of code layout and 

ogan ization, such as indentation, line length, and nesting depth. 

These features influence how easily the visual structure of the 

code can be parsed. 

(2)     Semantic Elements: This category focuses on meaning and nam-

ing elements like variable names, function signatures, and logical 



CS Pedagogy: Readability and Reusability 

3 

 

organization of blocks. These impact on the reader’s ability to 

understand what the code is doing. 

(3)     Supportive Elements: These are secondary but essential features 

like comments, spacing, and documentation. They provide addi-

tional context that enhances understanding, especially when re-

visiting or reusing code later. 

 

A novel aspect of our pedagogical framework is the intentional framing 

of new concepts through the lens of readability. Rather than treating code 

structure as a peripheral concern, we introduce programming constructs 

by explicitly connecting them to the goal of writing clearer code. For ex-

ample: 

(1) Loops: Improve readability by reducing repetition and con-

densing loginto a more compact and digestible format, allow-

ing students to focus on conditions rather than scrolling 

through repeated blocks. 

(2) Comments: Offer supplemental context that explains why cer-

tain decisions were made, especially when the logic is non-ob-

vious. Well-placed comments act as a silent guide for the 

reader. 

(3) Recursion: While potentially more abstract, recursion provides 

mathematically elegant solutions that can be easier to reason 

about, especially when solving problems like factorials or trav-

ersing trees. Teaching students to evaluate recursion based on 

clarity helps them decide when it aids or hinders readability. 

Figure 2 illustrates how key programming constructs contrib-

ute to improved code readability. The horizontal flow connects 

three essential elements 

 

Fig. 1.  Teaching Readability in Computer science education 

Students should be encouraged to actively evaluate both their 

own code and that of their peers through the lens of readability. In the 

early stages of learning, students often produce code that, while function-

ally correct, may be verbose, repetitive, or poorly structured. As they are 

introduced to readability-enhancing constructs such as loops, modular 

functions, and meaningful naming conventions, their code begins to 

evolve. By comparing these later efforts with their earlier work, students 

can observe concrete improvements: shorter and more organized scripts, 

clearer logic flow, and better use of abstraction. 

This reflective process allows students to internalize what 

makes code more readable not just theoretically, but experientially. It also 

aligns with common practices in professional software environments, 

where teams rely on coding standards and peer reviews to ensure that code 

remains maintainable and comprehensible over time. By mirroring these 

practices in the classroom, we help students not only improve their pro-

gramming skills but also prepare for collaborative, real-world develop-

ment settings. 

3.2 Reusability 

Code reusability refers to the ability to apply existing code to new 

contexts with little or no modification (Mejba et al., 2023). While the def-

inition may require some adaptation in academic settings where learning 

objectives often take precedence over real-world applicability it remains 

one of the most critical drivers of efficiency in professional software de-

velopment. In industry, reusability supports long-term project continuity, 

minimizes redundant effort, and reduces onboarding and testing time (So-

jer & Henkel, 2010). It also ensures that knowledge embedded in code 

outlives individual contributors, supporting sustainable development prac-

tices across teams and organizations. 

The students should be encouraged to review their own work for the 

potential to reuse it in future assignments. Rather than requiring that each 

assignment be approached from scratch, instructors can promote the reuse 

of previously written logic, functions, or structures especially when those 

solutions have proven to be clear, effective, and well-documented. Though 

creativity and doing original work is valued in academia, forcing students 

to write brand-new code from scratch for every single assignment might 

unintentionally teach the wrong lesson. In the real world especially in pro-

fessional software development reusing, modularizing, and adapting ex-

isting code is not just acceptable, it’s considered best practice to reduce 

development and testing times. 

A key contribution of this framework is the intentional framing of 

reusability as a pedagogical tool. Every new programming construct can 

be introduced by asking: How does this improve the potential to reuse 

code? This question shifts the learning process from isolated problem-

solving to a mindset of designing for adaptability and scalability. For ex-

ample: 

(1) Methods: Encapsulate logic into discrete units that can be reused 

across multiple programs or scenarios, reducing duplication and 

improving maintainability. 

(2) Object-Oriented Principles: Abstractions like classes and inher-

itance allow for code to be extended or repurposed in new pro-

jects with minimal changes. 

(3) Comments: Serve as documentation that enhances reusability by 

making the code understandable to future users (including the 

original author), independent of its original context. 

 

  



Karuppasamy and Larson / American Journal of Advanced Research 2025 9 (1) 1-5 

4 

 

    Fig. 1.  Teaching Reusability in Computer Science Education 

 

Figure 3 illustrates how core programming constructs meth-

ods, object-oriented principles and comments contribute to code reusabil-

ity.  

3.3 Recommendations 

As a result, the mantra of this framework is, every concept in a com-

puter science course should be evaluated in terms of how it improves read-

ability, reusability, or both. These twin goals provide students with an on-

going structure for self-evaluation and refinement. Anecdotally, we ob-

serve that novice students tend to focus on only one dimension usually 

readability but with practice and guided instruction, they begin to recog-

nize that the most powerful programming constructs improve both simul-

taneously. This dual focus not only enhances academic understanding but 

also cultivates habits aligned with industrial readiness, where maintaina-

bility and adaptability are essential in professional coding environments. 

Figure 4 illustrate the interplay between Readability and Reusability as 

foundational principles in computer science education. 

 

                                              

Fig. 1.  Readability and Reusability as Interlocking Foundations 

 

This observation opens the door to future empirical research: 

How do students develop the capacity to evaluate code across both dimen-

sions? At what point does their perspective shift from seeing readability 

and reusability as separate concerns to understanding their interdepend-

ence? 

4 Data and Observations 

In an average-sized introductory computer science course (Java Pro-

gramming I) at an R1 university targeted at technically inclined students, 

but not necessarily computer science majors, students were given a pre- 

and post-course self-evaluation. They were informed that the purpose of 

this exercise was not for grading, but solely for self-reflection and to guide 

future course improvements after final grades were submitted. Students 

also participated in a standard university course evaluation process. 

 

Pre/Post-Test Self-Evaluation Questions: 

(1) I feel confident in my ability to read and write code in at least 

one formal programming language. 

(2) I feel confident in my ability to read and write code in Java. 

(3) I feel confident in my ability to solve problems. 

(4) I feel confident in my ability to solve problems using struc-

tured, iterative steps. 

(5) I feel confident in my ability to solve problems in a way that is 

understandable by a computer. 

(6) I have been exposed to Linux before. 

(7) I know what a GUI is and can create one. 

(8) I know what compilation is and how it fits into the program-

ming process. 

(9) I have a framework for learning a new programming language 

on my own, if necessary. 

(10) I could teach someone how to write and run a "Hello, World" 

program and answer basic questions about it. 

 

On average, students rated themselves 4.8/10 on the pre-test 

and 9.6/10 on the post-test, a substantial improvement in self-perceived 

competency. While these numbers are not statistically rigorous due to the 

small, non-randomized sample and non-empirical nature of the instru-

ment, they nonetheless indicate a positive trend. A more formal study with 

larger cohorts and controlled variables would be needed to draw general-

izable conclusions about the framework’s effectiveness. 

In addition, 100% of the qualitative comments in the official 

course evaluation mentioned increased confidence and understanding. 

Faculty peer reviewers noted the novelty and coherence of framing pro-

gramming concepts around readability and reusability, describing it as 

perceptively beneficial for student comprehension and retention. 

Of course, correlation is not causation. It is possible that the 

positive student outcomes observed were driven less by the framework 

itself and more by the intentionality and learner-centric design imple-

mented by the instructor. This leads us to a broader recommendation. 

5 Broader Applications to Other Fields 

The authors suggest that while this specific framework of readability 

and reusability was developed within the context of computer science ed-

ucation, the underlying pedagogical principle is frequently based on prin-

ciple and not the specific subject.   pedagogy as a result, the specific call 

to action, even in other fields it to take some subset of industry common 

terminology or metric and use it as the rubric when introducing new con-

cepts.   

Instructors across disciplines might consider adopting similarly in-

tuitive and discipline-relevant frameworks. The idea is not to chase perfect 

fidelity to theory but to offer learners a navigational tool even if whimsical 

or imperfect that structures thinking and promotes transferability. A few 

illustrative, fictional examples: 

 Alchemy: Represent all processes as either distillation (isolating 

core ideas) or combination (synthesizing multiple elements). 

New tools or techniques are introduced in terms of how they en-

hance one or both actions. 

 Metaphysics: Frame learning in terms of constraints tightening and 

loosening them. Students evaluate ideas by how they move to-

ward or away from an idealized, unconstrained conceptual space. 

 Holophone: Imagine knowledge acquisition as the pursuit of har-

mony. Each new topic or skill either adds to a resonant whole or 

introduces dissonance that must be resolved through understand-

ing. 



CS Pedagogy: Readability and Reusability 

5 

 

 

These analogies are intentionally lighthearted and exaggerated “far-

cical,” even yet that simplicity makes them memorable. They provide a 

cognitive hook, a shared language between instructor and student, and a 

structure for organizing knowledge that otherwise risks being fragmented.  

6 Conclusion 

As programming education adapts to new technological and peda-

gogical realities, instructors must not only transfer knowledge but also 

equip students with durable, transferable practices that reflect professional 

expectations. This paper presents readability and reusability as guiding 

principles through which students can develop strong, communicative, 

and maintainable coding habits. By embedding these principles consist-

ently across assignments and instructional strategies, educators can pro-

vide students with a clear view for both evaluating and improving their 

work.  

While the observed outcomes are promising, the results should be 

interpreted as a starting point for further research, rather than conclusive 

evidence. Larger-scale studies and cross-institutional comparisons could 

help refine the model and assess its broader applicability. Furthermore, the 

broader philosophical insight—that teaching is most impactful when it 

uses familiar and meaningful frameworks to shape unfamiliar concepts 

extends beyond computer science. Whether through readability, distilla-

tion, or harmony, students benefit when learning is organized around an 

intuitive, consistent narrative. In this spirit, we invite instructors in all dis-

ciplines to explore how core values of their respective professions might 

be reframed as pedagogical anchors, enriching both instruction and stu-

dent understanding. 

Acknowledgements 

The quick brown fox jumps over the lazy dog. The quick brown fox jumps over the 

lazy dog. The quick brown fox jumps over the lazy dog. The quick brown fox jumps 

over the lazy dog. The quick brown fox jumps over the lazy dog. The quick brown 

fox jumps over the lazy dog. 

Funding 

This work has been supported by the ….. 

 

Conflict of Interest: none declared. 

References 

Buse, R. & Weimer, W. (2010). Learning a Metric for Code Readability. Software 

Engineering, IEEE Transactions on. 36. 546-558. 10.1109/TSE.2009.70. 

Hajkowicz, S., Sanderson, C., Karimi, S., Bratanova, A., & Naughtin, C. (2023). 

Artificial intelligence adoption in the physical sciences, natural sciences, life sci-

ences, social sciences and the arts and humanities: A bibliometric analysis of 

research publications from 1960-2021. arXiv preprint arXiv:2306.09145. 

Koseda, E., Cohen, I., Cooper, J., & Mcintosh, B. (2024). Embedding employability 

into curriculum design: The impact of education 4.0. Policy Futures in Educa-

tion. 10.1177/14782103241282121. 

Larson, T & Crouse, G. (2022). Proposal for Ray’s Multivector: An objective metric 

for culling strategic plans.  Journal of Management Science and Business Intel-

ligence, 7(2). 

McElheran, K., & Brynjolfsson, E. (2024). AI adoption in America: Who, what, and 

where. Journal of Economics & Management Strategy, 33(1), 5-29. DOI: 

10.1177/14782103241282121 

Mejba, R., & Miazi, S., & Palash, A., & Sobuz, T., & Ranasinghe, R. (2023). The 

Evolution and Impact of Code Reuse: A Deep Dive into Challenges, Reuse Strat-

egies and Security. 6. 10.5281/zenodo.10141558. 

Rahman, M. & Roy, C. (2018). On the Use of Context in Recommending Exception 

Handling Code Examples. 10.48550/arXiv.1807.02261. 

Sojer, M. & Henkel, J. (2010). Code Reuse in Open-Source Software Development: 

Quantitative Evidence, Drivers, and Impediments. J. AIS. 11. 

10.17705/1jais.00248. 

 


	1 Introduction
	2 Frameworks and Models
	3 Readability and Reusability
	3.1 Readability
	3.2 Reusability
	3.3 Recommendations

	4 Data and Observations
	5 Broader Applications to Other Fields
	6 Conclusion
	Acknowledgements
	Funding
	References

