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Abstract  

Embedded microprocessor systems are used every day by millions of people, but these systems are not seen because (as the name 

implies) they are buried inside the product or the equipment. They are incorporated into products such as cars, fridges, ovens, traffic 

lights, industrial equipment, and so on. It was reported that as far back as 1997, close to 2 billion chips were used in numerous 

embedded systems applications. Embedded processors were expected to grow worldwide by 11 per cent back in 2020.  

These embedded processors consume more power than their earlier generations. Focus of this project is to investigate the dynamic 

power consumption when the processor is running. Two processors are chosen for experiment. The Very Simple Central Processing 

Unit (VSCPU) has only four instructions whereas the Relatively Simple Central Processing Unit (RSCPU) has sixteen instructions. 

As such, VSCPU is expected to consume less power. However, for a particular task, the code written for VSCPU is expected to be 

larger than that of RSCPU. So, the execution time for VSCPU is expected to be longer as well. In this paper, both CPU design is 

presented and simulation with floating point operations to estimate its power and energy consumption is discussed. The power con-

sumption figures of a Mod 6 counter is presented, as an example. Eventually, the same will be extended to the CPUs and will be 

compared. This work will demonstrate the effect of instruction-set size on dynamic power and energy consumption of processors. 

 

 

1 Introduction and Problem definition  

Embedded microprocessor systems are computer chips that are incorpo-

rated into products such as cars, fridges, ovens, traffic lights, industrial 

equipment, and so on. Although, these embedded systems have shrunk in 

size and operates at higher speed, they consume more power than their 

earlier generations [1][2][3]. It is necessary to employ cooling mechanism 

to disperse the heat generated from this additional power [4][5]. One way 

to minimize this power consumption is to shut down the internal hardware 

components that are in idle state at any specific time. They can be powered 

up again when it is required [6]. Another way to address this problem is to 

design several versions of the same (homogeneous functionality) compo-

nent with different power ratings. These versions can be used as needed 

[7][8][9]. For example, a high power version can be used when high per-

formance is needed and a low power version can be used when the perfor-

mance demand is less. We have developed methodology to support the 

above concepts. We have simulated the methodology in appropriate 

framework and have observed more than 50% reduction in static power 

consumption (when idle) for two example microprocessors. We would 

like to investigate the dynamic power consumption when the processor is 

running. Embedded microprocessor systems are used every day by mil-

lions of people, but these systems are not seen because, as the name im-

plies, they are buried inside the product or the equipment. It was reported 

that as far back as 1997, close to 2 billion chips were used in numerous 

embedded systems applications.  The Very Simple Central Processing 

Unit (VSCPU) has only four instructions whereas the Relatively Simple 

Central Processing Unit (RSCPU) has sixteen instructions [10]. However, 

for a particular task, the code written for VSCPU is expected to be larger 

than that of RSCPU. As such, the execution time for VSCPU is expected 

to be longer as well. In this project, RSCPU will be designed and simu-

lated with floating point operations to estimate its power and energy con-

sumption. These figures will be compared with that of VSCPU. When 

completed, this work will demonstrate the effect of instruction-set size on 

dynamic power and energy consumption of processors. The first objective 

is set to measure the dynamic power and energy of RSCPU. The next ob-

jective is to compare them with that of VSCPU. 

2     Hardware Development of VSCPU and RSCPU 

 

Static power consumption is the power used when the processor is idle. 

Dynamic power consumption is the power used when the processor is ex-

ecuting code. In this project, we would like to investigate dynamic power 

consumption when the processor runs benchmark code. 
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As shown in the following Table 1, the VSCPU has only four instructions 

(ADD, AND, JMP, and INC) implemented through four execution path. 

In total, it has six states. 

 

Table 1: Execution States of VSCPU 

 

Fetch 1 

Fetch 2 

Fetch 3 

(IR=00) (IR=01) (IR=10) (IR=11) 

ADD 1  AND 1 JMP1 INC1 

ADD 2 AND 2   

 

These four instructions need to be repeated extensively in order to carry 

out any complex task. For example, a multiplication will be carried out as 

repeated addition. As such, the size of the code is expected to be larger 

(and the execution time will be longer). However, the amount of hardware 

resources needed for implementing VSCPU is less. 

 

As compared to VSCPU, RSCPU has sixteen instructions as shown in Ta-

ble 2. Conditional instructions have two additional execution paths. It re-

sults in 54 states. These instructions provide more flexibility in order to 

carry out any complex task and need to be less repeated. As such, the size 

of the code is expected to be smaller. However, the amount of hardware 

resources needed for implementing RSCPU is more. 

 

Table 2: Possible Instruction Execution of RSCPU 

 

Fetch 1 

Fetch 2 

Fetch 3 

NOP  LDAC STAC MVAC 

MOVR JMP JMPZ (Z=1) JMPZ (Z=0) 

JPNZ (Z=1) JPNZ (Z=0) ADD SUB 

INAC CLAC AND OR 

XOR NOT   

 

3      Implementation Methodology 
 

In order to measure dynamic power, the VSCPU and the RSCPU need to 

be designed. It was designed using VHSIC Hardware Description Lan-

guage (VHDL). The language is supported in Quartus II Integrated Devel-

opment Environment (IDE) tool / platform. IDE with a hardware platform 

that can accommodate the CPUs is available. The IDE also provides facil-

ity to analyze power consumption of the designed processor. Table 3 

shows the registers of VSCPU.  

 

AR Address Register 

PC Program Counter 

DR Data Register 

AC Accumulator 

IR Instruction Register 

 

Table 3: Very Simple CPU Registers 

 

In addition, it has a hardwired control unit consisting of a counter, state 

decoder, and control logic generator. Also the VSCPU has an ALU that 

can ADD and AND two operands. It was designed and verified on the 

hardware platform. 

Table 4 shows the registers of RSCPU.  

 

AR Address Register 

PC Program Counter 

DR Data Register 

TR Temporary Register 

AC Accumulator 

IR Instruction Register 

R Register 

 

Table 4: Relatively Simple CPU Registers 

 

It was designed and tested earlier. First, the individual blocks of Table 4 

was modeled using VHDL and tested thereupon (as done for VSCPU). In 

addition, it also has a hardwired control unit consisting of a counter, state 

decoder, instruction decoder, timing decoder, and control logic generator. 

Also the RSCPU has an ALU that can perform addition, subtraction, and 

several logical operations on two operands. Then these models were hier-

archically synthesized to form the RSCPU and tested as well. Then the 

memory was modeled in VHDL with appropriate executable code embed-

ded in the memory. This code represents floating point addition and / or 

multiplication. These arithmetic operations are considered as benchmarks.  

RSCPU and the memory will be joined to form the complete system. This 

complete system will be simulated in Modelsim simulator. The simulator 

is available from the vendor of Quartus II IDE tool. Both Quartus II IDE 

and Modelsim simulator run on personal computer. 

 

4     Benchmark Application 
 
Benchmark Application consists of floating-point number addition and 

multiplication. Such 32-bit numbers are typically represented by IEEE 754 

format as shown below.   

 

 

 

 

The very simple processor has two separate program instruction configu-

rations set to execute either a simulated IEEE 754 single precision floating 

point addition operation or multiplication operation depending on which 

program is loaded to the processor’s memory. The IEEE 754 single preci-

sion floating point addition operation executes 8 AND, 8 JMP, and 3 ADD 

instructions to simulate the 8-bit exponent comparison and 23-bit mantissa 

addition. The simulated IEEE 754 multiplication is accomplished through 

a series of 16 ADD operations which represent the exponent additions and 

multiplication of the mantissa bits.  

Due to the additional instructions implemented in the Relatively Simple 

processor, it was possible to more accurately simulate the floating-point 

operations. The IEEE 754 single precision floating point addition program 

begins by executing a loop that compares the two exponent values of the 

number to be added. The first exponent is loaded using the LDAC instruc-

tion and is then moved to the storage register R using the MOVR instruc-

tion. The second exponent value is then loaded using the LDAC instruc-

tion and compared to the exponent value in the R register using the XOR 

instruction. If the result of the XOR operation is not zero, the program 

jumps, using the JPNZ instruction, to a set of instructions that first loads 

the second exponent value from memory using the LDAC instruction. 

This value is then incremented using the INAC instruction and the new 

value is stored back into memory using the STAC instruction. After these 

instructions, the program returns to the beginning instructions using the 



Processor Energy Performance 

3 

 

JUMP instruction and re-executes the exponent comparison loop. This 

loop iterates three times before the exponents are equalized. On the fourth 

iteration of the loop, the exponents are compared and the result of the XOR 

instruction is zero therefore the JPNZ instruction is not executed. The pro-

gram then begins adding the mantissa bytes of the floating-point numbers. 

The first mantissa byte of one number is loaded into the accumulator using 

the LDAC instruction; it is then moved to the storage register R by the 

MVAC instruction. The first mantissa byte of the second number is then 

loaded to the accumulator and added with the first byte of the first number 

using the ADD instruction. The result is then stored in memory using the 

STAC instruction. This process is repeated for the remaining two bytes of 

mantissa data. 

The IEEE 754 single precision floating point multiplication routine begins 

by first loading the exponent byte to the accumulator using the LDAC in-

struction. This byte is then moved to the storage register R using the 

MVAC instruction. The exponent of the second number is then loaded to 

the AC using the LDAC instruction and added to the first exponent using 

the ADD instruction. The result of this addition is then stored in memory 

using the STAC instruction. The first mantissa byte of the first number is 

then loaded to the AC using the LDAC instruction. The ADD instruction 

is then performed four times to simulate a small multiplication. The result 

of these additions is then stored to memory using the STAC instruction. 

This process is then repeated for mantissa bytes two and three of the first 

number. 

 

5     Benchmark Execution and Test Results 
 
Modelsim simulation generates a signal activity file that can is used as an 

input to Quartus II IDE tool for power calculation. The tool gives the static 

and dynamic power (p) consumed by the CPU when executing floating 

point arithmetic code. Also, it is possible to measure the execution time 

(t) in the simulator. These values would enable us to calculate the energy 

(p ˟ t) consumed. 

Both the CPUs can be operated at various clock frequencies. Three oper-

ating clock frequencies will be chosen (10 MHz, 20 MHz, and 40 MHz) 

and the energy data will be collected for each. These energy data of 

RSCPU will be compared against the energy data of VSCPU (which was 

collected in an earlier study) [11]. 

To familiarize with the process of measuring power, the Mod 6 counter  

(that counts from 0 to 5) design was chosen. The design worked correctly 

and was verified by checking the LED counter display with the Altera 

FPGA board. The modulus 6 counter program, which included the modi-

fication of an added clock divider, was downloaded to the FPGA board 

and compiled in Quartus II for design verification and testing. After the 

Mod 6 counter was proven to work, the design was opened in ModelSim 

to check the signal activity during the CPU's operation since the signal 

activity can be used to analyze the power consumption of the hardware 

design. The waveform created as a result of the signal activity in Mod-

elSim can be seen in Figure 1. 

The signal activity of a Modulus 6 counter generated from ModelSim can 

be saved to a VCD file and be used to analyze power consumption with 

Quartus II’s Power Analysis Tool. A test bench was used for the Mod 6 

counter where design inputs were initialized, and the clock frequencies 

were also included. Simulation of the test bench generates signal activity, 

which is fed to Quartus II for power consumption calculation and the re-

sults of the power consumption for the Modulus 6 counter can be seen in 

Table 5 where 5 MHz to 50 MHz clock frequencies were used. 

 

 

 

 

 

Figure 1: Modulus 6 Counter Input / Output Waveform 

 

Clock Frequency Power Consumed 

50 MHz 68.25 mW 

40 MHz 67.53 mW 

20 MHz 66.07 mW 

10 MHz 65.35 mW 

5 MHz 64.96 mW 

 

Table 5: Modulus 6 Counter Clock Frequency and Power Consumption  

 

The relationship between the clock frequency of the counter and the power 

consumed is further depicted in Figure 2.  

                                                                                                                                                                                                                 

 

Figure 2: Modulus 6 Counter Clock Frequency and Power Consumption 

Relationship. 

 

6     Conclusion and Further Research 
 

From the results gathered after simulating the Modulus 6 counter, it re-

veals that almost a linear relationship exists between the performance of 

the system (in terms of the amount of power the system consumes) and 

the operating clock frequency. This process of measuring the power con-

sumption would be extended to both VSCPU and RSCPU with benchmark 

applications. Results would be collected at various frequencies. Then, 
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those results would be analyzed and compared in order to find the effect 

of instruction set size on power (and energy) consumption of processors. 
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