

Copyright © 2022 by authors and IBII. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

American Journal of Advanced Research, 2022, 6–2

December. 2022, pages 01-04

doi: 10.5281/zenodo.7265966

http://www.ibii-us.org/Journals/AJAR/

ISBN 2572-8849 (Online), 2572-8830 (Print)

Performance Comparison of Processor for Energy Efficiency

Muhammad Z Hasan*, Nicholas Trevino, Jacob Flores

School of Engineering, Texas A&M International University, 5201 University Boulevard, Laredo, TX 78041.

*Email: muhammad.hasan@tamiu.edu

Received on June 6, 2022; revised on September 11, 2022; published on October 30, 2022

Abstract

Embedded microprocessor systems are used every day by millions of people, but these systems are not seen because (as the name

implies) they are buried inside the product or the equipment. They are incorporated into products such as cars, fridges, ovens, traffic

lights, industrial equipment, and so on. It was reported that as far back as 1997, close to 2 billion chips were used in numerous

embedded systems applications. Embedded processors were expected to grow worldwide by 11 per cent back in 2020.

These embedded processors consume more power than their earlier generations. Focus of this project is to investigate the dynamic

power consumption when the processor is running. Two processors are chosen for experiment. The Very Simple Central Processing

Unit (VSCPU) has only four instructions whereas the Relatively Simple Central Processing Unit (RSCPU) has sixteen instructions.

As such, VSCPU is expected to consume less power. However, for a particular task, the code written for VSCPU is expected to be

larger than that of RSCPU. So, the execution time for VSCPU is expected to be longer as well. In this paper, both CPU design is

presented and simulation with floating point operations to estimate its power and energy consumption is discussed. The power con-

sumption figures of a Mod 6 counter is presented, as an example. Eventually, the same will be extended to the CPUs and will be

compared. This work will demonstrate the effect of instruction-set size on dynamic power and energy consumption of processors.

1 Introduction and Problem definition

Embedded microprocessor systems are computer chips that are incorpo-

rated into products such as cars, fridges, ovens, traffic lights, industrial

equipment, and so on. Although, these embedded systems have shrunk in

size and operates at higher speed, they consume more power than their

earlier generations [1][2][3]. It is necessary to employ cooling mechanism

to disperse the heat generated from this additional power [4][5]. One way

to minimize this power consumption is to shut down the internal hardware

components that are in idle state at any specific time. They can be powered

up again when it is required [6]. Another way to address this problem is to

design several versions of the same (homogeneous functionality) compo-

nent with different power ratings. These versions can be used as needed

[7][8][9]. For example, a high power version can be used when high per-

formance is needed and a low power version can be used when the perfor-

mance demand is less. We have developed methodology to support the

above concepts. We have simulated the methodology in appropriate

framework and have observed more than 50% reduction in static power

consumption (when idle) for two example microprocessors. We would

like to investigate the dynamic power consumption when the processor is

running. Embedded microprocessor systems are used every day by mil-

lions of people, but these systems are not seen because, as the name im-

plies, they are buried inside the product or the equipment. It was reported

that as far back as 1997, close to 2 billion chips were used in numerous

embedded systems applications. The Very Simple Central Processing

Unit (VSCPU) has only four instructions whereas the Relatively Simple

Central Processing Unit (RSCPU) has sixteen instructions [10]. However,

for a particular task, the code written for VSCPU is expected to be larger

than that of RSCPU. As such, the execution time for VSCPU is expected

to be longer as well. In this project, RSCPU will be designed and simu-

lated with floating point operations to estimate its power and energy con-

sumption. These figures will be compared with that of VSCPU. When

completed, this work will demonstrate the effect of instruction-set size on

dynamic power and energy consumption of processors. The first objective

is set to measure the dynamic power and energy of RSCPU. The next ob-

jective is to compare them with that of VSCPU.

2 Hardware Development of VSCPU and RSCPU

Static power consumption is the power used when the processor is idle.

Dynamic power consumption is the power used when the processor is ex-

ecuting code. In this project, we would like to investigate dynamic power

consumption when the processor runs benchmark code.

http://www.ibii-us.org/Journals/AJAR/
mailto:muhammad.hasan@tamiu.edu

C. Hasan et al. / American Journal of Advanced Research 2022 6(2) 01-04

2

As shown in the following Table 1, the VSCPU has only four instructions

(ADD, AND, JMP, and INC) implemented through four execution path.

In total, it has six states.

Table 1: Execution States of VSCPU

Fetch 1

Fetch 2

Fetch 3

(IR=00) (IR=01) (IR=10) (IR=11)

ADD 1 AND 1 JMP1 INC1

ADD 2 AND 2

These four instructions need to be repeated extensively in order to carry

out any complex task. For example, a multiplication will be carried out as

repeated addition. As such, the size of the code is expected to be larger

(and the execution time will be longer). However, the amount of hardware

resources needed for implementing VSCPU is less.

As compared to VSCPU, RSCPU has sixteen instructions as shown in Ta-

ble 2. Conditional instructions have two additional execution paths. It re-

sults in 54 states. These instructions provide more flexibility in order to

carry out any complex task and need to be less repeated. As such, the size

of the code is expected to be smaller. However, the amount of hardware

resources needed for implementing RSCPU is more.

Table 2: Possible Instruction Execution of RSCPU

Fetch 1

Fetch 2

Fetch 3

NOP LDAC STAC MVAC

MOVR JMP JMPZ (Z=1) JMPZ (Z=0)

JPNZ (Z=1) JPNZ (Z=0) ADD SUB

INAC CLAC AND OR

XOR NOT

3 Implementation Methodology

In order to measure dynamic power, the VSCPU and the RSCPU need to

be designed. It was designed using VHSIC Hardware Description Lan-

guage (VHDL). The language is supported in Quartus II Integrated Devel-

opment Environment (IDE) tool / platform. IDE with a hardware platform

that can accommodate the CPUs is available. The IDE also provides facil-

ity to analyze power consumption of the designed processor. Table 3

shows the registers of VSCPU.

AR Address Register

PC Program Counter

DR Data Register

AC Accumulator

IR Instruction Register

Table 3: Very Simple CPU Registers

In addition, it has a hardwired control unit consisting of a counter, state

decoder, and control logic generator. Also the VSCPU has an ALU that

can ADD and AND two operands. It was designed and verified on the

hardware platform.

Table 4 shows the registers of RSCPU.

AR Address Register

PC Program Counter

DR Data Register

TR Temporary Register

AC Accumulator

IR Instruction Register

R Register

Table 4: Relatively Simple CPU Registers

It was designed and tested earlier. First, the individual blocks of Table 4

was modeled using VHDL and tested thereupon (as done for VSCPU). In

addition, it also has a hardwired control unit consisting of a counter, state

decoder, instruction decoder, timing decoder, and control logic generator.

Also the RSCPU has an ALU that can perform addition, subtraction, and

several logical operations on two operands. Then these models were hier-

archically synthesized to form the RSCPU and tested as well. Then the

memory was modeled in VHDL with appropriate executable code embed-

ded in the memory. This code represents floating point addition and / or

multiplication. These arithmetic operations are considered as benchmarks.

RSCPU and the memory will be joined to form the complete system. This

complete system will be simulated in Modelsim simulator. The simulator

is available from the vendor of Quartus II IDE tool. Both Quartus II IDE

and Modelsim simulator run on personal computer.

4 Benchmark Application

Benchmark Application consists of floating-point number addition and

multiplication. Such 32-bit numbers are typically represented by IEEE 754

format as shown below.

The very simple processor has two separate program instruction configu-

rations set to execute either a simulated IEEE 754 single precision floating

point addition operation or multiplication operation depending on which

program is loaded to the processor’s memory. The IEEE 754 single preci-

sion floating point addition operation executes 8 AND, 8 JMP, and 3 ADD

instructions to simulate the 8-bit exponent comparison and 23-bit mantissa

addition. The simulated IEEE 754 multiplication is accomplished through

a series of 16 ADD operations which represent the exponent additions and

multiplication of the mantissa bits.

Due to the additional instructions implemented in the Relatively Simple

processor, it was possible to more accurately simulate the floating-point

operations. The IEEE 754 single precision floating point addition program

begins by executing a loop that compares the two exponent values of the

number to be added. The first exponent is loaded using the LDAC instruc-

tion and is then moved to the storage register R using the MOVR instruc-

tion. The second exponent value is then loaded using the LDAC instruc-

tion and compared to the exponent value in the R register using the XOR

instruction. If the result of the XOR operation is not zero, the program

jumps, using the JPNZ instruction, to a set of instructions that first loads

the second exponent value from memory using the LDAC instruction.

This value is then incremented using the INAC instruction and the new

value is stored back into memory using the STAC instruction. After these

instructions, the program returns to the beginning instructions using the

Processor Energy Performance

3

JUMP instruction and re-executes the exponent comparison loop. This

loop iterates three times before the exponents are equalized. On the fourth

iteration of the loop, the exponents are compared and the result of the XOR

instruction is zero therefore the JPNZ instruction is not executed. The pro-

gram then begins adding the mantissa bytes of the floating-point numbers.

The first mantissa byte of one number is loaded into the accumulator using

the LDAC instruction; it is then moved to the storage register R by the

MVAC instruction. The first mantissa byte of the second number is then

loaded to the accumulator and added with the first byte of the first number

using the ADD instruction. The result is then stored in memory using the

STAC instruction. This process is repeated for the remaining two bytes of

mantissa data.

The IEEE 754 single precision floating point multiplication routine begins

by first loading the exponent byte to the accumulator using the LDAC in-

struction. This byte is then moved to the storage register R using the

MVAC instruction. The exponent of the second number is then loaded to

the AC using the LDAC instruction and added to the first exponent using

the ADD instruction. The result of this addition is then stored in memory

using the STAC instruction. The first mantissa byte of the first number is

then loaded to the AC using the LDAC instruction. The ADD instruction

is then performed four times to simulate a small multiplication. The result

of these additions is then stored to memory using the STAC instruction.

This process is then repeated for mantissa bytes two and three of the first

number.

5 Benchmark Execution and Test Results

Modelsim simulation generates a signal activity file that can is used as an

input to Quartus II IDE tool for power calculation. The tool gives the static

and dynamic power (p) consumed by the CPU when executing floating

point arithmetic code. Also, it is possible to measure the execution time

(t) in the simulator. These values would enable us to calculate the energy

(p ˟ t) consumed.

Both the CPUs can be operated at various clock frequencies. Three oper-

ating clock frequencies will be chosen (10 MHz, 20 MHz, and 40 MHz)

and the energy data will be collected for each. These energy data of

RSCPU will be compared against the energy data of VSCPU (which was

collected in an earlier study) [11].

To familiarize with the process of measuring power, the Mod 6 counter

(that counts from 0 to 5) design was chosen. The design worked correctly

and was verified by checking the LED counter display with the Altera

FPGA board. The modulus 6 counter program, which included the modi-

fication of an added clock divider, was downloaded to the FPGA board

and compiled in Quartus II for design verification and testing. After the

Mod 6 counter was proven to work, the design was opened in ModelSim

to check the signal activity during the CPU's operation since the signal

activity can be used to analyze the power consumption of the hardware

design. The waveform created as a result of the signal activity in Mod-

elSim can be seen in Figure 1.

The signal activity of a Modulus 6 counter generated from ModelSim can

be saved to a VCD file and be used to analyze power consumption with

Quartus II’s Power Analysis Tool. A test bench was used for the Mod 6

counter where design inputs were initialized, and the clock frequencies

were also included. Simulation of the test bench generates signal activity,

which is fed to Quartus II for power consumption calculation and the re-

sults of the power consumption for the Modulus 6 counter can be seen in

Table 5 where 5 MHz to 50 MHz clock frequencies were used.

Figure 1: Modulus 6 Counter Input / Output Waveform

Clock Frequency Power Consumed

50 MHz 68.25 mW

40 MHz 67.53 mW

20 MHz 66.07 mW

10 MHz 65.35 mW

5 MHz 64.96 mW

Table 5: Modulus 6 Counter Clock Frequency and Power Consumption

The relationship between the clock frequency of the counter and the power

consumed is further depicted in Figure 2.

Figure 2: Modulus 6 Counter Clock Frequency and Power Consumption

Relationship.

6 Conclusion and Further Research

From the results gathered after simulating the Modulus 6 counter, it re-

veals that almost a linear relationship exists between the performance of

the system (in terms of the amount of power the system consumes) and

the operating clock frequency. This process of measuring the power con-

sumption would be extended to both VSCPU and RSCPU with benchmark

applications. Results would be collected at various frequencies. Then,

C. Hasan et al. / American Journal of Advanced Research 2022 6(2) 01-04

4

those results would be analyzed and compared in order to find the effect

of instruction set size on power (and energy) consumption of processors.

Funding

This work was awarded a University Research Grant by the Texas A&M Interna-

tional University.

Conflict of Interest: none declared.

References

A. Telikepalli, “Power-Performance Inflection at 90 nm Process Node - FPGAs in

Focus” Chip Design Magazine, October 9, 2005.

J. Butts, G. Sohi, “A Static Power Model for Architects,” 33rd Annual International

Symposium on Microarchitecture, December 2000.

N. Kim, T. Austin, D. Blaauw, T. Mudge et al., “Leakage Current: Moore’s Law

Meets Static Power,” IEEE Press, December 2003.

B.S. Deepaksubramanyan, A. Nunez, “Analysis of Subthreshold Leakage Reduction

in CMOS Digital Circuits,” Proceedings of the 13th NASA VLSI Symposium,

June 2007.

W. Elgharbawy, M. Bayoumi, “Leakage Sources and Possible Solutions in Nanome-

ter CMOS Technologies,” IEEE Circuits and Systems Magazine, Fourth Quarter,

2005.

M. Z. Hasan and Mathew Bird, “Energy Reduction for Processors in Reconfigurable

Logic,” IEEE International Conference on Electro/Information Technology

(EIT), Minnesota State University, Mankato, MN, USA, May 15-17, 2011.

P. Abusaidi, M. Klein, B. Philofsky, “Power Consumption Areas in FPGAs,” in Vir-

tex-5 FPGA System Power Design Considerations, Xilinx Inc. February, 2008.

Texas Instruments Inc, “CMOS Power Consumption and Cpd Calculation,” Texas

Instruments Inc, June 1997.

Umer Misgar and M.Z. Hasan, “Performance Analysis of Different Multiplication

Strategies in Reconfigurable Hardware,” IASTED International Conference on

Parallel and Distributed Systems, Dallas, December 14-16, 2011.

J. Carpinelli, Computer Systems Organization and Architecture, Reading, Massachu-

setts: Addison-Wesley, October 2000.

Muhammad Z Hasan, Nicholas Trevino, “Performance Comparison of Processor for

Energy Efficiency”, International Conference of Advanced Research in Applied

Science, Engineering and Technology (ICARASET'22), Dallas, TX, April 1,

2022.

	1 Introduction and Problem definition
	Embedded microprocessor systems are computer chips that are incorporated into products such as cars, fridges, ovens, traffic lights, industrial equipment, and so on. Although, these embedded systems have shrunk in size and operates at higher speed, th...
	2 Hardware Development of VSCPU and RSCPU
	Funding
	References

