

Copyright © 2017 by authors and IBII. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

American Journal of Advanced Research, 2021, 5–1

July. 2021, pages 06-12

doi: 10.5281/zenodo.5112633

http://www.ibii-us.org/Journals/AJAR/

ISBN 572-8849 (Online), 2572-8830 (Print)

Database Web Application for Administering Spatio-Temporal

Access Control Policies

Miguelangel Trevino1, Mustafa Al Lail2

2Department of Engineering, Address 5201 University Boulevard, Lamar Bruni Vergara Science Center 312, Laredo, TX 78041-1900

1Email: miguelangeltrevino@dusty.tamiu.edu

2*Email: mustafa.allail@tamiu.edu

Received on June 06, 2021; revised on July 14, 2021; published on July 18, 2021

Abstract

Governmental and business organizations use the standard authorization model─ Role-based access control (RBAC) ─ to specify and

administer access policies for electronic resources. In RBAC-based applications, access is granted or denied based on users’ creden-

tials. However, the RBAC model lacks features that allow applications to determine access based on time and location, spatio-temporal

information. This access requirement is important for a growing number of mobile applications. Researchers have proposed new access

control models to accommodate organizations' reliance on mobile applications. The General Spatio-temporal Role-Based Access Con-

trol model (GSTRBAC) is a model that incorporates time and location constraints as additional factors to grant access to resources.

This paper presents the results of our undergraduate research project on creating a relational database that provides a way to store and

retrieve GSTRBAC policy information. Further, the paper describes a web application that security analysts can use to administer

GSTRBAC policies.

Keywords: Authorization, Role-Based Access Control, Mobile Application, Time, Location

1 Introduction

With the advent of technological advancement and wireless communi-

cation, more governmental and private sector organizations rely on mobile

applications to support their beneficiaries. Such applications abide by the

specialties of mobile technology attempting to gather information on us-

ers’ environments. These environmental conditions, such as time and lo-

cation, can be coupled to a user’s credentials to allow for more advanced

authorization. Figure 1 depicts an example of the use of location to allow

access to smart home systems. Using the Global Positioning System

(GPS), the location of the mobile device is determined to be outside the

smart home, where access to the home’s motion detector system should

not be allowed. Such a policy, known as spatio-temporal policy, ensures

the protection of homeowner’s security in the event of a lost or stolen de-

vice.

The Role-based access control model (RBAC) is the standard access

control model used by multiple organizations [1]. This model, however, is

incapable of expressing time and location constraints. Thus, RBAC has

been extended to accommodate spatio-temporal requirements [2]-[4]. The

Figure 1: A thief attempts to disable the motion detector using a stolen

mobile but is prevented due to location constraints.

GSTRBAC model was designed using the class models of the Unified

Modeling Language (UML), the standard modeling language in the soft-

ware industry [6].

However, the UML class model provides an abstract representation of

GSTRBAC policies and lacks descriptions of how these policies are

stored, retrieved, and administered.

http://www.ibii-us.org/Journals/AJAR/
mailto:miguelangeltrevino@dusty.tamiu.edu

Article short title

Figure 2: UML class model representing GSTRBAC policies.

This paper aims to describe the implementation of a database system

for storing and administering GSTRBAC policies. To achieve this goal,

we first convert the UML policy class model to a relational database

schema, which subsequently is used to create policy databases. Second,

we use the Structured Query Language (SQL), C# programming language,

and the Visual Studio Table Designer tool to define, manipulate, and ac-

cess a GSTRBAC policy database for a simple company system. Third,

we outline a web application developed using the ASP.NET Model View

Controller (MVC) framework. The web application is used by access con-

trol analysts for the administration of the policy database.

This paper is organized as follows. Section 2 gives an overview of the

GSTRBAC model. Conversion of the UML policy class model to a rela-

tional database schema is detailed in Section 3. The implementation de-

tails of the database in SQL and the web application are discussed in Sec-

tion 4. Lastly, Section 5 summarizes the paper and points out future work.

2 Overview of GSTRBAC

Figure 2 depicts the UML class model representing the different com-

ponents of the GSTRBAC model and their interrelationships with spatio-

temporal concepts. The main classes are User, Role, and Permission. In

GSTRBAC, class User represents a collection of personnel that can ac-

cess the system’s resources. Class Role is a collection of jobs that a

user can be assigned to, e.g., a teacher. Permission is a collection of ac-

tions that a Role can perform, such as a teacher editing grades. The

GSTRBAC main classes are related to each other by the two UML asso-

ciation classes RoleRelation and PermissionAssignment. Class RoleRe-

lation has two subclasses RoleAssignment and RoleActivation, denoting

that a user is assigned to a particular role and a role is activated by a

specific user, respectively. Similarly, PermissionAssignment indicates

the permissions assigned to a role.

The GSTRBAC model also supports other higher-level access control

concepts such as role hierarchy (represented by class RoleHierarchy)

and separation of duty (denoted by class SeparationOfDuty). Role Hier-

archy indicates a chain of authority for roles and can be of two types

 Activation (a user assigned to a senior role activate a junior role) and

Inheritance (a user assigned to a senior role can use the permissions for

the junior roles). Separation of duty occurs when two users cannot be

assigned to two conflicting roles (e.g., the same user should not be as-

signed to billing clerk and account receivable clerk roles), or a role can-

not be assigned to two conflicting permissions (e.g., a loan officer is not

permissible to issue loan request and approve it). As shown in the figure,

almost all components are associated with the class STZone to express

the time and the location these components are enabled. Interested read-

ers can find more information in the GSTRBAC model paper [5].
Having gone over the key concepts of GSTRBAC I will briefly explain

the methods we used to arrive at the current UML class model. UML fol-

lows a simple set of rules that analyze papers to arrive at the final design

of a class model. I will use the previous paragraphs in section 2 as an ex-

ample paper to explain these rules. First according to UML guidelines in

an informative or scientific paper we must identify any nouns found in a

sentence. For our section 2 example we have nouns such as Role,

GSTRBAC, User, Permissions, etc. Once we identify nouns we deem im-

portant to a system we then insert them into the class model as a class.

These classes are used to represent an object we can manipulate. Follow-

ing we need to denote the elements of a class we can manage, we call these

attributes. In an informative paper such as this one many of the attributes

a class may posses have been described. In our case we can determine a

permission to have an attribute of an action in its manageable attributes.

Many of these attributes will have to be assigned a data type to best fit

their representation. Data types being the way we store them within coding

format (a name would be a string in coding language). Once we have all

the classes attributes we then need to determine the ways in which these

classes will interact with each other. In our paper we state a Role to have

a Permission, as such these two classes have a relationship. UML denotes

this relationship as a line to connect them. In our case, we added an addi-

tional class to act as an intermediary between them. From here it is up to

the designers understanding of the system to determine how the various

classes will interact.

Database Web Application

8

Figure 3: The relational database schema produced from conversion of GSTRBAC UML class model.

3 GSTRBAC Relational Database

We created a relational database to manage and process the GSTRBAC

policies. In this section, we provide the rules we followed to convert the

UML design model (i.e. Figure 2) to the relation database schema outlined

in Figure 3.

We applied the following set of rules that convert the UML class model

to the relational database schema, as suggested by Alvaro Monge [7]:

1. Map UML classes to tables in the relational database schema.

2. Attributes of a UML class are mapped to fields of corre-

sponding tables.

3. Create primary keys for all tables, if not already included in

fields.

4. One-to-many associations between classes in UML are rep-

resented as foreign keys in the schema diagram.

5. Many-to-many associations between UML classes are repre-

sented as a separate table that connect the classes of the asso-

ciations together.

Applying the rules above, we begin by converting all classes in Figure

2 to schema tables. For example, Figure 4 displays the output of the con-

version for the UML class User. In the conversion process, we keep the

names of UML classes the same for tables (indicated by the gray box in

the diagram). After the conversion of the classes, any attributes of the clas-

ses will be assigned as fields to the corresponding named tables.

Figure 4: Conversion of an UML class to a relational database table.

In a database schema, every table must have a primary key; therefore, fol-

lowing the third rule above, we created a primary key for each table. For

example, in Figure 4, we added the UserId field to the User table (under-

lined to indicate a primary key).

As shown in the UML class model (Figure 2), the class STZone is as-

sociated with class User by a one-to-many association. Therefore, apply-

ing rule 4 above, we indicate the foreign key STZoneid in the User table.

In the schema diagram, a foreign key is denoted by an arrow pointing to

the referenced field of another table. Figure 5 shows this mapping.

Figure 5: Mapping example of one-to-many associations.

In the case of many-to-many associations, we apply rule 5 to create

junction tables to store all the relationship instances between the two clas-

ses. For example, the many-to-many association between classes Role and

STZone (in Figure 2) is represented by the RoleSTZone junction table be-

tween the corresponding Role and STZone tables, as shown in Figure 6.

Figure 6: A junction table to represent a many-to-many association.

In the GSTRBAC UML class model (Figure 2), RoleHierarchy and

SeparationOfDuty represent generalization-specialization relationships.

We convert these UML classes to schema tables by using the foreign keys

 T. Miguelangel et al. / American Journal of Advanced Research 2021 5(1) 06-12

9

Figure 8: Visual Studio Table Designer user interface.

of the generalizations in the specialization classes. For example, Sepera-

tionOfDuty has two specialization classes: Static and Dynamic. The gen-

eralization class has a one-to-many association with the STZone and Role

classes; hence, two foreign keys are used. As a result, in the schema dia-

gram, the specialization classes Static and Dynamic both contain foreign

keys of STZone and Role, as shown in Figure 7.

Figure 7: How we handle generalization-specialization relationships.

Similarly, we applied the same conversion to the RoleHierarchy gener-

alization-specialization relationship.

4 Database Implementation and Administration

To demonstrate the applicability of GSTRBAC policies, we instanti-

ated the policy schema in Figure 3 for a simple company. We followed the

three-tier architecture, where the client machine interacts with the data-

base through a separate database server [8]. In this section, we first outline

our use of Visual Studio’s table designer to create the company policy

database. We then overview the ASP.NET Model View Controller (MVC)

application that security analysts can use to interact with the policy data-

base for administration purposes.

4.1 Policy Database Development

We used SQL as the database definition and manipulation language in

this project. Visual Studio provides a package for SQL Server database

development. This package contains the Table Designer tool to create and

instantiate databases. We used Table Designer to create tables for the

schema in Figure 3. Figure 8 shows the Table Designer’s interface that

automatically generates the SQL commands to create the STZone table

from the schema in Figure 3

After creating the database tables, we instantiated them with data mod-

eled after a software development company. We represent this data that

follows as data sets encapsulating the overall concepts of the GSTRBAC

model.

1) Users = {Bob, Ben, Alice, Rachael, Clare, Sam}.

2) Time Intervals = {i1, i2}. where i1 = [8 a.m. to 6 p.m.] and

i2 = [6 p.m. to 8 a.m.].

3) Locations = {Home, DevelopmentOffice, TestingOffice,

DirectorOffice, DepartmentBuilding}.

4) Roles = { Software Engineer (SE), Software Programmer

(SP), Test Engineers (TE), Programmer Supervisor (PS),

Test Supervisor (TS), Project Lead (PL) }.

5) Objects = { Project Files (obj1), Test Files (obj2), Program-

mer Logs (obj3), Test Logs (obj4), Programmer Supervisor

Report (obj5), Test Supervisors Reports (obj6) }..

6) Activities = {read, write, copy, run, review}.

7) Permissions = { P1(read, obj1), P2(write, obj1), P3(copy,

obj1), P4(write, obj2), P5(run, obj2)), P6(review, obj4),

P7(review, obj3)), P8(read, obj5) }.

8) STZones = {z0, z1, z2, z3, z4}, where z0 = (Department-

Building, i1), z1 = (Home, i2), z2 = (DevelopmentOffice,

i1), z3 = (TestingOffice, i1), and z4 = (DirectorOffice, i1).

9) User Role Assignment = { (Ben, SP, z1), (Ben, SP, z2),

(Bob, PS, z2), (Alice, PL, z4), (Clare, TS, z3), (Rachael, TE,

z1), (Rachael, TE, z3), (Sam, SE, z0) }.

10) Permission Role Assignment = { (SP, P1, z1), (SP, P1, z2),

(SP, P2, z1), (SP, P2, z2), (SP, P3, z2), (TE, P4, z1), (TE,

P4, z3), (TE, P5, z3), (TS, P6, z3), (PS, P7, z2), (PL, P8, z4)

}.

11) Role Hierarchy = { (PS, SP, z2), (TS, TE, z3), (PL, PS, z0),

(PL, TS, z0) }.

12) Separation of Duty = { (SP, TE, z0) }.

These data sets represent groups of entities that make up the GSTRBAC

model; as a result, we have data such as: (1) Users representing the various

users that may access company resources. (2) Time Intervals and (3) Lo-

cations that have been embedded by the company. (4) Roles that a user

may have in the company. These various data sets assist us in establishing

information that a potential company may allow administrators to manage.

Additionally, they provide data that allows us to test the overall applica-

tion and its functionality.

Following the instantiation of the data we then begin development of

the external web-based application. We follow this process as the web ap-

plication requires a model of the database. Because of this we needed to

clarify the various data types of the information, for instance a user has a

name which in code is called a string. For this reason we needed to match

 T. Miguelangel et al. / American Journal of Advanced Research 2021 5(1) 06-12

11

the data types of the database information to that of the model required for

the web application.

Figure 9: General Representation of the MVC Framework

4.2 Administration Web Application

ASP.NET MVC is a framework for developing web applications in Visual

Studio using the C# language [9]. This framework enables the communica-

tion between a database and a web application using the Models, Views, and

Controllers architecture detailed in figure 9. In the MVC framework, Models

represent the structure of a database using classes in C#. We do so as the two

other components use this structure to appropriately convey data from a da-

tabase. First and foremost it accomplishes this by denoting the type of data

that will be retrieved or stored in the database. Continuing, the View com-

ponent displays data from a table found in the database to a web application

following the structure of the Model. It does so in conjunction with the Con-

troller and Model components. In which, the Controller passes data to the

View where we format it to allow for easier administration. Further, Con-

trollers provide the logic for manipulating data and passing it to the View to

display. In the Controller component we develop the complex actions that

administrator then use in policy management.

The following paragraphs detail the development of the web applica-

tion using the MVC framework. Before I begin explaining the details of

the development, I need to give context to Language Integrated Queries

(LINQ), Razor and HyperText Markup Language (HTML). LINQ is a

variant of SQL that C# programs use to query the data from a database

and is the primary language used in the Controller component of MVC.

Razor and HTML are coding formats used in the development of a web

page. HTML is the standard language used in this aspect and is used to

determine how a web page will be displayed, the View component uses

it frequently. Razor acts similarly to HTML and compresses HTML to

allow for improved readability and management. We use Razor in the

View component to allow for improved communication between the

View and Controller components. Now that I have introduced the differ-

ent coding languages used in the web application we will be looking at

its development. We begin with Listing 1 showing an example of a

LINQ query. This query retrieves the information contained in the User

table.

Listing 1: C# LINQ code that retrieves User table data.

var userTable = From users in _Context.User Select users;

Listing 2 shows a query that updates the User table to include a new

user instance. This new user is inputted by administrators who can deter-

mine the information attributed to a new addition. In figure 4 we allow a

user in the relational database schema to have a name. As a result, when

administrators include a new user they can input the name of this user

and any other information available. Note that listing 2 is the general

LINQ code to add a new user, the code needed to allow for such inputs

has been left out of this example for simplicity.

Listing 2: A LINQ query that adds a user instance to the User table.

_context.Add(users);

await _context.SaveChangesAsync();

We can combine such queries shown in listings 1 and 2 to enable ad-

ministrators of the system to perform complex actions. Listing 3 shows

an example LINQ code we use to display the roles of a user to an admin-

istrator. The query shown for this listing is once more the simplified ver-

sion to avoid overly complex code or LINQ statements.

Listing 3: Query that retrieves available roles of a user.

public async Task<IActionResult> GetAssignedRolesView(int? us-

erSearchId, int? zoneId)

{

 if (userSearchId == null || zoneId == null)

 {

 var roleTable = from roles in _context.Role select roles;

 return View(await roleTable.ToListAsync());

 }

 var assignedRoles = GetAssignedRoles(userSearchId,zoneId);

 return View(await assignedRoles.AsQueryable().ToListAsync());

}

The following paragraph will go further in detail regarding listing 3.

For this example, we show an action that has been coded into the Con-

troller component of the MVC framework. This action represents a func-

tion that has been created under the C# coding and LINQ languages. The

first two lines detail the name of the action and the inputs that an admin-

istrator can assign when executing the action, these are denoted by the

‘?’ figure in parenthesis. The inputs available to administrators are the

userSearch Id and zoneId. Manipulating these input parameters, as de-

scribed in coding knowledge, administrators can thereby change the in-

formation displayed to the View component. We allow such a change us-

ing an if statement denoted by line 4’s ‘if’ keyword. In this statement we

determine if the administrator has not inputted any information to the pa-

rameters and from here can diverge to two separate paths. The first is

when either or none of the parameters have been inputted. This results in

the full list of roles being viewable to administrators. The second is when

both parameters have been given an input. The result is two function

calls that return the roles given to the specified user. These LINQ state-

ments allow for the communication between the policy database we pre-

viously instantiated with data and the web application itself. It does this

by taking any data retrieved from the database and passing it to the View

Database Web Application

10

component of the MVC framework. Listing 4 shows an example of the

GetAssignedRolesView action in the View component.

Figure 10: The GSTRBAC administration web application directory page.

Listing 4: HTML View page displaying roles of a user.

<form asp-controller="Users" asp-action="GetAssignedRolesView">

<p>

 Role: <input type="number" name="userSearchId" />

 Selected STZone: <input type="number" name="zoneId" />

 <input type="submit" value="Filter" />

</p>

</form>

<table class="table">

 <tbody>

 @foreach (var item in Model)

 {

 <tr>

 <th>

 @Html.DisplayFor(modelItem => item.RoleId)

 </th>

 <td>

 @Html.DisplayFor(modelItem => item.Name)

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.Abbreviation)

 </td>

 </tr>

 }

 </tbody>

</table>

I will go over the key aspects of the HTML code presented by listing

4 and their importance in displaying information to an administrator.

Majority of the statements in the View component are denoted as HTML

code that allow for the data to be displayed. We use a more modern ap-

proach in the form of Razor statements. These Razor statements can be

identified by the ‘@’ symbol. Using multiple Views we allow for admin-

istrators to perform a variety of actions. Following I will explain the end

result of using the MVC framework.

Figure 10 displays the directory page of the web administration appli-

cation through which the data in the tables can be manipulated. The web

application displays pages through the MVC View component, which

enables administrators to pass data to Controllers. The Controllers then

use the input in LINQ queries to perform actions predefined by the com-

pany’s policies.

Thus, administrators can handle tables and perform maintenance on

the policy database.

5 Conclusion

The purpose of this paper was to describe the results of an undergradu-

ate research project. The project targeted the implementation of the policy

database in a web application for administrating spatio-temporal policies

as formalized by the UML GSTRBAC class model. We discussed the rules

for the conversion of a UML class model to a relational database schema.

 T. Miguelangel et al. / American Journal of Advanced Research 2021 5(1) 06-12

11

We, then, outlined the tools we used to create a web application for a pol-

icy database for use in a simple company administrating GSTRBAC pol-

icies.

Future work will focus on the integration of the web application with a

software system to enable authorization for users. Additionally, we plan

to improve the web application to include protections against common

cyber-attacks.

Funding

This work has been supported by the Act On Ideas Program under the Texas

A&M International University.

References

[1] Ravi Sandhu, Edward Coyne, Hal Feinstein, and Charles Youman, Role-based

access control models. IEEE Computer, 29(2):38–47, 1996.

[2] Indrakshi Ray and Manachai Toahchoodee. A spatio-temporal role-based access

control model. In Proc. 21st Annu. IFIP WG 11.3 Working Conf. Data

Appl. Security (DBSec), pages 211–226, 2007.

[3] Subhendu Aich, Shamik Sural, and A.K. Majumdar. STARBAC: Spatio temporal

role based access control. In On The Move to Meaningful Internet Sys-

tems (OTM), pages 1567–1582, Vilamoura, Portugal, 2007.

[4] Arjmand Samuel, Arif Ghafoor, and Elisa Bertino. A framework for specification

and verification of generalized spatio-temporal role based access control

model. In Tech. Rep. CERIAS TR 2007-08, 2007.

[5] Ramadan Abdunabi, Mustafa Al-Lail, Indrakshi Ray, and Rober France. Specifi-

cation, Validation, and Enforcement of a Generalized Spatio-Temporal

Role-Based Access Control Model. IEEE Systems Journal, 7(3):501-

515, 2013.

[6] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Lan-

guage User Guide. Addison-Wesley Professional, Reading, MA, 2005.

[7] Alvaro Monge. Database design with UML and SQL, 4th edition.

https://web.csulb.edu/colleges/coe/cecs/dbdesign/dbdesign.php.

[8] Abraham Silberschatz, Henry Korth, and S. Sudarshan. Database System Con-

cepts. McGraw-Hill Education, New York, 2020.

[9] Jon Galloway, Brad Wilson, Scott Allen, and David Matson. Professional

ASP.NET MVC 5. John Wiley & Sons, Inc., Indianapolis, 2014.

http://www.csulb.edu/~amonge

	1 Introduction
	2 Overview of GSTRBAC
	Figure 3: The relational database schema produced from conversion of GSTRBAC UML class model.
	3 GSTRBAC Relational Database
	4 Database Implementation and Administration
	4.1 Policy Database Development
	Figure 9: General Representation of the MVC Framework
	4.2 Administration Web Application
	ASP.NET MVC is a framework for developing web applications in Visual Studio using the C# language [9]. This framework enables the communication between a database and a web application using the Models, Views, and Controllers architecture detailed in ...

	5 Conclusion
	Funding
	References

