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Abstract 

This paper is focused on a class of delay differential inverse variational inequality composed of a system of delay differential equations 

and inverse variational inequalities. Also, the existence theorem of Carathéodory weak solution for delay differential inverse varia-

tional inequalities is established under suitable conditions. Furthermore, an algorithm for solving delay differential inverse variational 

inequalities is shown, and the convergence of the algorithm is given. Finally, a numerical example is given to simulate the effectiveness 

of the algorithm. 
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1     Introduction  

As is known to all that variational inequality is a very important non-linear 

problem which is widely used to solve optimization, programming prob-

lem, management science and economic equilibrium (see, for example, [1-

4]). However, there are many parameters in reality changing with time, 

which the static variational inequality cannot be solved. Pang and Stewart 

[5] first introduced a class of differential variational inequalities (DVI for 

short) composed of a class of ordinary differential equations and varia-

tional inequalities in finite-dimensional Euclidean spaces in order to solve 

the brand new mathematical crossover problem, and the numerical solu-

tion of DVI was obtained by Euler time-stepping procedure. For some re-

lated work, we refer to the references [5-13]. Li et al [14] generalized the 

results mentioned above to differential mixed variational inequalities. 

However, there were multiple solutions for each step under this condition. 

A unique solution was guaranteed by the regularized time-stepping 

method in a Hilbert space. Very recently, Wang et al [15] studied the ex-

istence for DVI with relaxing the convexity condition. 

DVI provides a powerful modeling paradigm for many applied prob-

lems in which dynamics, inequalities, and discontinuities are present; ex-

amples of such problems include constrained time-dependent physical 

systems with unilateral constrains, differential Nash games, and hybrid 

engineering systems with variable structures. Friesz [16] studied the dif-

ferential Cournot-Nash game describing dynamic oligopolistic network 

competition via a DVI involving both control and state variables. Also, 

Raghunathan [17] considered parameter estimation in metabolic flux bal-

ance models for batch fermentation by using DVI. 

Taking time delays often arisen in reality into account, Wang et al [18] 

introduced and studied a class of delay differential variational inequalities 

(DDVI for short) which is composed of a class of delay differential equa-

tion and variational inequalities. In this article, sufficient conditions for 

the existence of Carathéodory`s weak solutions are obtained. Also, a time-

stepping method and its convergence analysis to find Carathéodory`s 

weak solutions are given. The results presented in this paper can be used 

to consider dynamic human migration and vector optimization constrained 

by delay differential equation. 

In addition, He et al [19,20] first introduced and studied the inverse var-

iational inequalities (IVI for short). Through the analysis of economics, 

management science and transportation, they pointed out that, among 

them, the problems of lower-level decision making can be formulated as 

a class of variational inequalities, but the problems of upper management 

usually can be formulated as a class of IVI. At the same time, a self-adap-

tive correction method for solving ‘black-box’ monotone IVI was given 

and its convergence was proved. Furthermore, He et al [21] advanced a 

method based on proximal algorithm for solving a class of constrained 

‘black-box’ IVI. He and Liu [22] put forward two projection-based meth-

ods for solving IVI. Zou et al [23] proposed neural networks for solving 

IVI. Yang [24] presented a dynamic power price problem and character-

ized the optimal regulatory price as the solution of a IVI. Scrimali [25] 

proposed a problem of the time-dependent spatial price equilibrium and 

formulated an evolutionary IVI. Barbagallo and Mauro [26] studied the 

http://www.ibii-us.org/Journals/AJAR/


H. Gao et al. / American Journal of Advanced Research 2018 2(1) 43-48 

44 

 

behavior of control policies for a dynamic oligopolistic market equilib-

rium and defined the optimal regulatory tax by using a IVI. 

For solving the time-dependent problems, it is necessary to consider an 

ordinary differential equation. Therefore, Li et al [27] first studied and in-

troduced a class of differential inverse variational inequalities (DIVI for 

short) in finite dimensional Euclidean spaces. The existence of 

Carathéodory weak solutions for DIVI was established. Moreover, they 

applied the DIVI for solving the time-dependent spatial price equilibrium 

control problem. 

On this basis, taking the time delays into account, we introduce and 

study a class of delay differential inverse variational inequalities (DDIVI 

for short) composed of a class of delay differential equations and inverse 

variational inequalities. 

The remaining part of this paper is organized as follows. In section 2, 

we present some preliminaries. In section 3, we establish sufficient condi-

tions for the existence theorem of Carathéodory weak solutions of DDIVI. 

In section 4, we provide an Euler time-stepping method for solving the 

DDIVI and show the convergence analysis of the algorithm. Finally, we 

give a numerical simulation to prove the validity of the algorithm for solv-

ing the DDIVI. 

 

2    Preliminaries 

In this article, we introduce and study the following delay differential in-

verse variational inequality (DDIVI for short) composed of a class of de-

lay differential equations and inverse variational inequalities: 

Find𝑥: [𝑡0, 𝑡0 + 𝑇] → ℝ𝑚and 𝑢: [𝑡0, 𝑡0 + 𝑇] → ℝ𝑛 , such that DDIVI(1) 

holds, 

{

𝑥̇(𝑡) = 𝑓(𝑥(𝑡 − 𝜏), 𝑢(𝑡)),                            for almost all 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇],

𝐺(𝑥(𝑡), 𝑢(𝑡)) ∈ 𝐾 ⊂ ℝ𝑛,    ⟨𝑣 − 𝐺(𝑥(𝑡), 𝑢(𝑡)), 𝑢(𝑡)⟩ ≥ 0,    ∀𝑣 ∈ 𝐾 ⊂ ℝ𝑛，
𝑥(𝑡0 + 𝑠) = 𝜑(𝑠),                                                                ∀𝑠 ∈ [−𝜏, 0].

 

where 𝑥̇(𝑡)： =
𝑑𝑥

𝑑𝑡
, denotes the time-derivative of a function x(t), 𝑡0de-

notes an initial time, and 𝜏 > 0, 𝑓: ℝ𝑚 × ℝ𝑛 → ℝ𝑚, 𝐺: ℝ𝑚 × ℝ𝑛 → ℝ𝑛 , 

and 𝜑: [−𝜏, 0] → ℝ𝑚. are three given mappings. 

Let SOL(ℝ𝑛 , 𝐺(𝑥,⋅)) denote the solution set of the following inverse var-

iational inequality, which is to find𝑢 ∈ ℝ𝑛such that 

𝐺(𝑥(𝑡), 𝑢(𝑡)) ∈ 𝐾 ⊂ ℝ𝑛 ,    ⟨𝑣 − 𝐺(𝑥(𝑡), 𝑢(𝑡)), 𝑢(𝑡)⟩ ≥ 0, ∀𝑣 ∈ 𝐾

⊂ ℝ𝑛 . 

The pair of (𝑥, 𝑢) is called a Carathéodory weak solution of DDIVI(1) if 

and only if 𝑥 is an absolutely continuous function on [𝑡0, 𝑡0 + 𝑇]. Also, 

for almost all 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇], it satisfies the following delay differential 

equation: 

{
𝑥̇(𝑡) = 𝑓(𝑥(𝑡 − 𝜏), 𝑢(𝑡)),

𝑥(𝑡0 + 𝑠) = 𝜑(𝑠),    ∀𝑠 ∈ [−𝜏, 0].
 

where 𝑢 ∈ 𝐿2([𝑡0, 𝑡0 + 𝑇], 𝑅𝑛), and 𝑢(𝑡) ∈ SOL(𝑅𝑛, 𝐺(𝑥(𝑡),⋅)). Thus, 

the set of all Carathéodory weak solutions (𝑥, 𝑢) for the initial-value 

DDIVI(1) is denoted by SOL(DDIVI(1)). 

Definition 2.1 Let 𝑌, 𝑍 be two Banach spaces. 𝐹: 𝑌 → 𝑍 is a strong 

continuous mapping if and only if, for any {𝑥𝑛} ⊂ 𝑌, when 𝑥𝑛 weakly 

converges to 𝑥, for any𝐹, there exists 

𝐹(𝑥𝑛) → 𝐹(𝑥). 

Lemma 2.1(The Schauder Fixed Point Theorem) [28] Let 𝐶 be a non-

empty, convex and compact subset of Banach space and 𝑇: 𝐶 → 𝐶 be a 

continuous mapping. Then the continuous mapping 𝑇 has a fixed point in 

𝐶. 

Lemma 2.2[18] If 𝑓 is continuous on ℝ𝑚 × ℝ𝑛 and 𝐺 is continuous on 

ℝ𝑚 × ℝ𝑛 . Then the pair (𝑥, 𝑢) is a Carathéodory weak solution of 

DDIVI(1) if and only if the following three relations hold: 

(i) for any 𝑡0 ≤ 𝑡1 ≤ 𝑡2 ≤ 𝑡0 + 𝑇, 

𝑥(𝑡2) − 𝑥(𝑡1) = ∫ 𝑓(𝑥(𝑠 − 𝜏), 𝑢(𝑠))
𝑡2

𝑡1

𝑑𝑠. 

(ii) for all 𝑣 ∈ 𝐿2([𝑡0, 𝑡0 + 𝑇], 𝐾), 

∫ ⟨𝑣 − 𝐺(𝑥(𝑡), 𝑢(𝑡)), 𝑢(𝑡)⟩𝑑𝑡 ≥ 0
𝑡0+𝑇

𝑡0

. 

(iii) the initial condition 𝑥(𝑡0 + 𝑠) = 𝜑(𝑠),    ∀𝑠 ∈ [−𝜏, 0]. 

Proof The absolute continuity of 𝑥 implies, for almost all 𝑡 ∈ ([𝑡0, 𝑡0 +

𝑇]), the equivalence between  

𝑥̇(𝑡) = 𝑓(𝑥(𝑡 − 𝜏), 𝑢(𝑡)). 

and 

𝑥(𝑡) = 𝑥(𝑡0) + ∫ 𝑓(𝑥(𝑠 − 𝜏), 𝑢(𝑠)𝑑𝑠.
𝑡

𝑡0

 

When 𝑢 ∈ 𝐿2([𝑡0, 𝑡0 + 𝑇], 𝑅𝑛), we can obtain that, for almost all 𝑡 ∈

([𝑡0, 𝑡0 + 𝑇]), 

𝑢 ∈ 𝑆𝑂𝐿(ℝ𝑛, 𝐺(𝑥(𝑡),⋅)). 

is equivalent to 

∫ ⟨𝑣 − 𝐺(𝑥(𝑡), 𝑢(𝑡)), 𝑢(𝑡)⟩𝑑𝑡 ≥ 0
𝑡0+𝑇

𝑡0

. 

for all 𝑣 ∈ 𝐿2([𝑡0, 𝑡0 + 𝑇], 𝐾). 

Lemma 2.3(Arzelá-Ascoli Theorem)[29] Let 𝑆 ⊂ 𝐶(𝐾, 𝑋) be compact 

and let 𝑦∞ be a sequence of continuous functions defined on 𝑆 ⊂

𝐶(𝐾, 𝑋). If {𝑦∞} is uniformly bounded and equicontinuous on 𝑆 ⊂

𝐶(𝐾, 𝑋) then there exists a subsequence {𝑦𝑘} that converges uniformly 

to a function 𝑦 ∈ 𝑆. 



A Class of Delay Differential Inverse Variational Inequalities  

45 

 

Lemma 2.4(Lebesgue`s Dominated Convergence Theorem)[30] Sup-

pose that {𝑓𝑛}𝑛=1
∞  is a sequence of measurable functions, that 𝑓𝑛 → 𝑓 

pointwise almost everywhere as 𝑛 → ∞, and that |𝑓𝑛| ≤ 𝑔 for all 𝑛, 

where 𝑔 is integrable. Then 𝑓 is integrable, and  

(i) 𝑙𝑖𝑚
𝑛→∞

∫ |𝑓𝑛(𝑥) − 𝑓(𝑥)|𝑑𝑥
𝐸

= 0, 

(ii) 𝑙𝑖𝑚
𝑛→∞

∫ 𝑓𝑛(𝑥)𝑑𝑥
𝐸

= ∫ 𝑓(𝑥)𝑑𝑥.
𝐸

 

Lemma 2.5(The Banach-Alaoglu Theorem) [31] Let 𝑋 be a Banach 

space. Then the unit ball {𝑓 ∈ 𝑋 ′|‖𝑓‖ ≤ 1} of 𝑋 ′ is compact in the 

weak* topology.  

3    Existence of the Solution of DDIVI 

Let 𝐶([𝑡0 − 𝜏, 𝑡0 + 𝑇 − 𝜏], ℝ𝑚)denote the set of all the continuous func-

tions from [𝑡0 − 𝜏, 𝑡0 + 𝑇 − 𝜏] into ℝ𝑚, and 𝑀([𝑡0, 𝑡0 + 𝑇], ℝ𝑛) denote 

the set of all the measurable functions from [𝑡0, 𝑡0 + 𝑇] intoℝ𝑛 . 

Assumption 3.1 Assume that there exists 𝜂 > 0, such that ‖𝑓‖𝑀 ≤ 𝜂, 

where ‖∙‖𝑀 denotes the maximum norm on ℝ𝑚 × ℝ𝑛. 

In order to establish the existence theorem of Carathéodory weak solu-

tion of DDIVI(1), we firstly define 

𝜑̂(𝑡) = {
𝜑(𝑡 − 𝑡0),    𝑡0 − 𝜏 ≤ 𝑡 ≤ 𝑡0,

𝜑(0),                      𝑡 ≥ 𝑡0.
                  (3-1) 

Assume that (𝑥(𝑡), 𝑢(𝑡)) is a Carathéodory weak solution of 

DDIVI(1). Define 

𝑦(𝑡0) = 𝑥(𝑡0 + 𝑡) − 𝜑̂(𝑡0 + 𝑡),    𝑡 ≥ −𝜏.               (3-2) 

It follows from(3-1) and (3-2) that, for every 𝑡 ∈ [−𝜏, 0], 
𝑦(𝑡) = 𝑥(𝑡0 + 𝑡) − 𝜑̂(𝑡0 + 𝑡) 

       = 𝑥(𝑡0 + 𝑡) − 𝜑(𝑡0 + 𝑡 − 𝑡0) 

       = 𝑥(𝑡0 + 𝑡) − 𝜑(𝑡) 

       = 0. 

and for every 𝑡 ∈ [−𝜏, 0], 
𝑦(𝑡) = 𝑥(𝑡0 + 𝑡) − 𝜑̂(𝑡0 + 𝑡) 

       = 𝑥(𝑡0 + 𝑡) − 𝜑(0) 

       = ∫ 𝑓(𝑥(𝑠 − 𝜏), 𝑢(𝑠))𝑑𝑠
𝑡0+𝑇

𝑡0

 

       = ∫ 𝑓(𝑥(𝑠 + 𝑡0 − 𝜏), 𝑢(𝑠 + 𝑡0))𝑑𝑠
𝑡

0

 

                = ∫ 𝑓(𝜑̂(𝑠 + 𝑡0 − 𝜏) + 𝑦(𝑠 − 𝜏), 𝑢(𝑠 + 𝑡0))𝑑𝑠
𝑡

0
.        (3-3) 

Define 

𝐴(𝑇, 𝜂𝑇) = {𝑦 ∈ 𝐶([−𝜏, 𝑇], ℝ𝑚): 𝑦(0) = 0, ‖𝑦‖𝑀 ≤ 𝜂𝑇}.          (3-4) 

and 

𝑇𝑦 = {
∫ 𝑓(𝜑̂(𝑠 + 𝑡0 − 𝜏) + 𝑦(𝑠 − 𝜏), 𝑢(𝑠 + 𝑡0))𝑑𝑠

𝑡

0
,    𝑡 ∈ [0, 𝑇],

0,                                                                           𝑡 ∈ [−𝜏, 0].
        

(3-5) 

Lemma 3.1 Let Assumption 3.1 holds, 𝑓 be continuous on ℝ𝑚 × ℝ𝑛 . 

Then for every 𝑢 ∈ 𝑀([𝑡0, 𝑡0 + 𝑇], ℝ𝑛), there exists a fixed point 𝑦 ∈

𝐴(𝑇, 𝜂𝑇) such that 𝑦 = 𝑇𝑦. 

Furthermore, there exists 𝑥 such that 

{
𝑥(𝑡) = 𝜑(0) + ∫ 𝑓(𝑥(𝑠 − 𝜏), 𝑢(𝑠))𝑑𝑠

𝑡

0
,

𝑥(𝑡0 + 𝑠) = 𝜑(𝑠),          ∀𝑠 ∈ [−𝜏, 0].
                 (3-6) 

Proof Let Assumption 3.1 holds, ‖𝑓‖𝑀 ≤ 𝜂. Then for any 𝑡1, 𝑡2 ∈

[0, 𝑇], 
‖T(y(𝑡1) − 𝑇(y(𝑡2)‖𝑀 ≤ 𝜂|𝑡1 − 𝑡1|, 

‖T(y(𝑡)‖
𝑀

≤ 𝜂𝑇. 

Define 

𝑆 = {𝑦 ∈ 𝐶([−𝜏, 𝑇], ℝ𝑚): ‖𝑦(𝑡1) − 𝑦(𝑡2)‖𝑀 ≤ 𝜂|𝑡1 − 𝑡2|,  

‖𝑦‖𝑀 ≤ 𝜂𝑇, 𝑦(0) = 0}. 

By Lemma 2.3(Arzelá-Ascoli Theorem), it implies that 𝑆 is compact. 

Next, we prove that the mapping 𝑇: 𝐴(𝑇, 𝜂𝑇) → 𝐴(𝑇, 𝜂𝑇) is continu-

ous. Assume that {𝑦𝑘} ⊂ 𝐴(𝑇, 𝜂𝑇) and 𝑦𝑘 → 𝑦∞ as 𝑦𝑘 → 𝑦∞. For every 

𝑆 ∈ [0, 𝑇], the continuity of 𝑓 implies that 

𝑓(𝜑̂(𝑠 + 𝑡0 − 𝜏) + 𝑦𝑘(𝑠 − 𝜏), 𝑢(𝑠 + 𝑡0))

→ 𝑓(𝜑̂(𝑠 + 𝑡0 − 𝜏) + 𝑦∞(𝑠 − 𝜏), 𝑢(𝑠 + 𝑡0))𝑑𝑠. 

Then Lemma 2.4(Lebesgue dominated convergence theorem) implies 

that 

∫ 𝑓(𝜑̂(𝑠 + 𝑡0 − 𝜏) + 𝑦𝑘(𝑠 − 𝜏), 𝑢(𝑠 + 𝑡0))𝑑𝑠
𝑡

0

→ ∫ 𝑓(𝜑̂(𝑠 + 𝑡0 − 𝜏) + 𝑦∞(𝑠 − 𝜏), 𝑢(𝑠 + 𝑡0))𝑑𝑠
𝑡

0

. 

for every 𝑡 ∈ [0, 𝑇] and therefore, 𝑇 is continuous on 𝐴(𝑇, 𝜂𝑇). 

Since 𝐴(𝑇, 𝜂𝑇) is a closed and convex subset, 𝑇 is a continuous map-

ping of 𝐴(𝑇, 𝜂𝑇) into 𝑆, and 𝑆 is a compact subset 𝐴(𝑇, 𝜂𝑇). It follows 

from Lemma 2.1 that there exists a fixed point 𝑦 ∈ 𝐴(𝑇, 𝜂𝑇) satisfying 

𝑦 = 𝑇𝑦, it follows that  

𝑦(𝑡) = {
∫ 𝑓(𝜑̂(𝑠 + 𝑡0 − 𝜏) + 𝑦(𝑠 − 𝜏), 𝑢(𝑠 + 𝑡0))𝑑𝑠

𝑡

0

,    𝑡 ∈ [0, 𝑇],

0,                                                               𝑡 ∈ [−𝜏, 0].

 

Then (3-1) and (3-2) imply that 

𝑥(𝑡0 + 𝑡) = 𝜑̂(𝑡0 + 𝑡) + 𝑦(𝑡) 

              =𝜑̂(𝑡0 + 𝑡) + ∫ 𝑓(𝑥(𝑠 + 𝑡0 − 𝜏), 𝑢(𝑠 + 𝑡0))𝑑𝑠
𝑡

0
,    ∀𝑡 ∈ [0, 𝑇].  

and so 

𝑥(𝑡) = 𝜑̂(0) + ∫ 𝑓(𝑥(𝑠 − 𝜏), 𝑢(𝑠))𝑑𝑠
𝑡

𝑡0

,    ∀𝑡 ∈ [𝑡0, 𝑡0 + 𝑇]. 

Moreover, (3-1) and (3-2) imply that 

𝑥(𝑡0 + 𝑠) = 𝜑(𝑠),    ∀𝑠 ∈ [−𝜏, 0]. 

Theorem 3.1 Let Assumption 3.1 hold, 𝑓(⋅,⋅)and 𝐺(⋅,⋅)are continuous 

on ℝ𝑚 with respect to the first variable and strongly continuous on 

𝐿2([𝑡0, 𝑡0 + 𝑇], ℝ𝑛) with respect to the second variable. Then 

𝑆𝑂𝐿(DDIVI(2-1)) is non-empty. 

Proof Take a measurable and uniformly bonded function,𝑢𝑛 ∈

𝑀([𝑡0, 𝑡0 + 𝑇], ℝ𝑛). By Lemma 3.1, there exists 𝑥𝑛 such that 

{
𝑥𝑛(𝑡) = 𝜑(𝑡0) + ∫ 𝑓(𝑥𝑛(𝑠 − 𝜏), 𝑢𝑛(𝑠))𝑑𝑠

𝑡

𝑡0
,    ∀𝑡 ∈ [𝑡0, 𝑡0 + 𝑇],

𝑥𝑛(𝑡0 + 𝑠) = 𝜑(𝑠),                                           ∀𝑠 ∈ [−𝜏, 0].
       

(3-7) 



H. Gao et al. / American Journal of Advanced Research 2018 2(1) 43-48 

46 

 

Since 𝐾 ⊂ ℝ𝑛 is a compact and convex set, and 𝐺 is continuous on 

ℝ𝑚 × ℝ𝑛 , and 𝑥𝑛 is continuous on [𝑡0, 𝑡0 + 𝑇], it follows that there exists 

a measurable function 𝑢𝑛+1 ∈ SOL(ℝ𝑛 , 𝐺(𝑥𝑛(𝑡),⋅)), and for all 𝑣 ∈

𝐿2([𝑡0, 𝑡0 + 𝑇], 𝐾), 

∫ ⟨𝑣(𝑡) − 𝐺(𝑥𝑛(𝑡), 𝑢𝑛+1(𝑡)), 𝑢𝑛+1(𝑡)⟩𝑑𝑡 ≥ 0
𝑡0+𝑇

𝑡0
.               (3-8) 

Then we get two sequences{𝑥𝑛} and {𝑢𝑛}, (𝑛 = 1,2, … … ). 

Since a sequence {𝑥𝑛} ∈ 𝐶([−𝜏, 𝑇], ℝ𝑚), (𝑛 = 1,2, … … ) and 

‖𝑥𝑛(𝑡1) − 𝑥𝑛(𝑡2)‖𝑀 ≤ 𝜂|𝑡1 − 𝑡1|， 

‖𝑦‖𝑀 ≤𝜂T, 

y(0) = 0, 

for any 𝑡1, 𝑡2 ∈ [0, 𝑇]. 

Then {𝑥𝑛}, (𝑛 = 1,2 … … ) is equicontinuous and uniformly bonded. 

By Lemma 2.3(Arzelá-Ascoli Theorem), there exists a subsequence of 

{𝑥𝑛}, which we denoted by {𝑥𝑛} again, such that 𝑥𝑛 → 𝑥 in the maximum 

norm. 

By the uniform boundedness of 𝑢𝑛 ∈ 𝑀([𝑡0, 𝑡0 + 𝑇], ℝ𝑛) and Lemma 

2.5( Alaoglu`s Theorem), it follows that the sequence {𝑢𝑛} has a weak* 

limit 𝑢̂. in 𝐿2([𝑡0, 𝑡0 + 𝑇], ℝ𝑛). The reflexive Banach space 𝐿2([𝑡0, 𝑡0 +

𝑇], ℝ𝑛) implies that weak* convergent sequences are also weakly con-

vergent sequences. 

By (3-7) and (3-8), in addition, 𝑓(⋅,⋅)and 𝐺(⋅,⋅)are continuous on 

ℝ𝑚with respect to the first variable and strongly continuous on 

𝐿2([𝑡0, 𝑡0 + 𝑇], ℝ𝑛) with respect to the second variable, it implies that 

{
𝑥(𝑡) = 𝜑(𝑡0) + ∫ 𝑓(𝑥(𝑠 − 𝜏), 𝑢̂(𝑠))𝑑𝑠

𝑡

𝑡0
,    ∀𝑡 ∈ [𝑡0, 𝑡0 + 𝑇],

𝑥(𝑡0 + 𝑠) = 𝜑(𝑠),                                         ∀𝑠 ∈ [−𝜏, 0].
      

(3-9) 

Then, for all 𝑣 ∈ 𝐿2([𝑡0, 𝑡0 + 𝑇], 𝐾), 

∫ ⟨𝑣(𝑡) − 𝐺(𝑥(𝑡), 𝑢̂(𝑡)), 𝑢̂(𝑡)⟩𝑑𝑡 ≥ 0
𝑡0+𝑇

𝑡0
.                (3-10) 

Therefore, (𝑥, 𝑢̂) is a Carathéodory weak solution of DDIVI(2-1). 

4    An Algorithm for DDIVI 

In this article, a time-stepping method is used to find a weak solution of 

DDIVI(2-1). Let [𝑟] denote the biggest integer which is less than or 

equal to 𝑟. 

Algorithm 4.1  

Step 0: It begins with the division of the time interval [𝑡0 − 𝜏, 𝑡0 + 𝑇] 

into [
𝑇

𝑙
] − [

−𝜏

𝑙
] subintervals: 

𝑡0 − 𝜏 = 𝑡
𝑙,[

−𝜏
𝑙 ]

< 𝑡
𝑙,[

−𝜏
𝑙 +1]

< ⋯ < 𝑡𝑙,−1 < 𝑡0 

               = 𝑡𝑙,0 < 𝑡𝑙,1 < ⋯ < 𝑡
𝑙,[

𝑇
𝑙 −1]

< 𝑡
𝑙,[

𝑇
𝑙 ]

= 𝑡0 + 𝑇. 

where 𝑙 > 0, and ([
𝑇

𝑙
] − [

−𝜏

𝑙
]) × 𝑙 = 𝑇 + 𝜏, and 𝑡𝑙,𝑖+1 = 𝑡𝑙,𝑖 + 𝑙, where 

𝑖 = [
−𝜏

𝑙
] , ⋯ , −1,0,1, ⋯ , [

𝑇

𝑙
]. 

Step 1: When [
−𝜏

𝑙
] ≤ 𝑖 < 0, let 𝑥𝑙,𝑖 = 𝜑(𝑡𝑙,𝑖), and compute 𝑢 = 𝑢𝑙,𝑖 , 

which satisfies the following variational inequality, 

𝐺(𝑥, 𝑢) ∈ 𝐾 ⊂ ℝ𝑛 ,    ⟨𝑣 − 𝐺(𝑥𝑙,𝑖 , 𝑢), 𝑢⟩ ≥ 0,    ∀𝑣 ∈ 𝐾 ⊂ ℝ𝑛 .       (4-

1) 

Step 2: Take 𝑘 = [
𝜏

𝑙
]. Let 

𝑥𝑙,𝑖+1 = {
𝑥𝑙,𝑖 + 𝑙𝑓(𝜑(𝑡𝑙,𝑖−𝑘), 𝑢𝑙,𝑖),    0 < 𝑖 ≤ 𝑘,

𝑥𝑙,𝑖 + 𝑙𝑓(𝑥𝑙,𝑖−𝑘 , 𝑢𝑙,𝑖),               𝑖 > 𝑘.
 

and let 𝑢 = 𝑢𝑙,𝑖+1 be the solution of the following variational inequal-

ity. 

𝐺(𝑥, 𝑢) ∈ 𝐾 ⊂ ℝ𝑛 ,    ⟨𝑣 − 𝐺(𝑥𝑙,𝑖+1, 𝑢), 𝑢⟩ ≥ 0,    ∀𝑣 ∈ 𝐾 ⊂ ℝ𝑛 .       

(4-2) 

By the recursion, for 𝑖 = [
−𝜏

𝑙
] , ⋯ , −1,0,1,2, ⋯ , [

𝑇

𝑙
− 1] , [

𝑇

𝑙
], the fol-

lowing two finite families of vectors are obtained:   

{𝑥𝑙,[
−𝜏
𝑙

]
, ⋯ , 𝑥𝑙,0, ⋯ , 𝑥𝑙,[

𝑇
𝑙

]
} ⊂ ℝ𝑚, 

{𝑢𝑙,[
−𝜏
𝑙

]
, ⋯ , 𝑢𝑙,0, ⋯ , 𝑢𝑙,[

𝑇
𝑙

]
} ⊂ ℝ𝑛. 

Finally, let 

𝑥𝑙(𝑡): = 𝑥𝑙,𝑖 +
𝑡 − 𝑡𝑙,𝑖

𝑙
(𝑥𝑙,𝑖+1 − 𝑥𝑙,𝑖),     ∀𝑡 ∈ [𝑡𝑙,𝑖 , 𝑡𝑙,𝑖+1], 

𝑢𝑙(𝑡): = 𝑢𝑙,𝑖 +
𝑡−𝑡𝑙,𝑖

𝑙
(𝑢𝑙,𝑖+1 − 𝑢𝑙,𝑖),     ∀𝑡 ∈ [𝑡𝑙,𝑖 , 𝑡𝑙,𝑖+1].           (4-3) 

Theorem 4.1 Let Assumption 3.1 hold. Then there exists a sequence 

{𝑙𝑚} ↓ 0 such that 𝑥𝑙𝑚 → 𝑥 and 𝑢𝑙𝑚 → 𝑢 in 𝐿2([𝑡0, 𝑡0 + 𝑇], ℝ𝑛), where 

𝑥𝑙𝑚 and 𝑢𝑙𝑚 are defined by (4-3). 

Furthermore, assume that 𝑓(⋅,⋅)and 𝐺(⋅,⋅)are continuous on ℝ𝑚 with 

respect to the first variable and strongly continuous in 𝐿2([𝑡0, 𝑡0 +

𝑇], ℝ𝑛) with respect to the second variable. Then all limits of (𝑥, 𝑢) are 

weak solutions of DDIVI(2-1). 

Proof Since 

𝑥𝑙𝑚,𝑖+1 = {
𝑥𝑙𝑚,𝑖 + 𝑙𝑚𝑓(𝜑(𝑡𝑙,𝑖−𝑘), 𝑢𝑙𝑚,𝑖),    0 < 𝑖 ≤ 𝑘,

𝑥𝑙𝑚,𝑖 + 𝑙𝑚𝑓(𝑥𝑙𝑚,𝑖−𝑘 , 𝑢𝑙𝑚,𝑖),             𝑖 > 𝑘.
 

and 

‖𝑓‖𝑚 ≤ 𝜂, 

which follows that 

|𝑥𝑙𝑚,𝑖+1 − 𝑥𝑙𝑚,𝑖| ≤ 𝜂𝑙𝑚. 

This implies that {𝑥𝑙𝑚(𝑡)} is equicontinuous and uniformly bounded. 

By Lemma 2.3(Arzelá-Ascoli Theorem), there exists a sequence {𝑙𝑚} ↓ 0 

such that {𝑥𝑙𝑚} converges to a function 𝑥 in the maximum norm. 

By the uniform boundedness of the sequence {𝑢𝑙𝑚} and Lemma 

2.5(Alaoglu`s Theorem), it follows that {𝑢𝑙𝑚} is a weak* convergent se-

quence in 𝐿2([𝑡0, 𝑡0 + 𝑇], ℝ𝑛). The reflexive Banach space 𝐿2([𝑡0, 𝑡0 +

𝑇], ℝ𝑛) implies that weak* convergent sequences are also weakly con-

vergent sequences. 

Actually,  

𝑥𝑙𝑚,𝑖+1 − 𝑥𝑙𝑚,𝑖 = {
𝑙𝑚 + 𝑓(𝜑(𝑡𝑙,𝑖−𝑘), 𝑢𝑙𝑚,𝑖),    0 < 𝑖 ≤ 𝑘,

𝑙𝑚 + 𝑓(𝑥𝑙𝑚,𝑖−𝑘 , 𝑢𝑙𝑚,𝑖),            𝑖 > 𝑘
 

 

                  = ∫ 𝑓(𝑥𝑙𝑚(𝑠 − 𝜏), 𝑢𝑙𝑚(𝑠))𝑑𝑠 + 𝑂(𝑙𝑚)
𝑡𝑙𝑚,𝑖+1

𝑡𝑙𝑚,𝑖

. 

 

Then for any 0 ≤ 𝑡1 ≤ 𝑡2 ≤ 𝑇, there exists 

𝑥𝑙𝑚(𝑡2) − 𝑥𝑙𝑚(𝑡1) = ∫ 𝑓(𝑥𝑙𝑚(𝑠 − 𝜏), 𝑢𝑙𝑚(𝑠))𝑑𝑠 + 𝑂(𝑙𝑚)
𝑡2

𝑡1

. 

It follows that 

𝑥(𝑡2) − 𝑥(𝑡1) = ∫ 𝑓(𝑥(𝑠 − 𝜏), 𝑢(𝑠))𝑑𝑠
𝑡2

𝑡1
.            (4-4) 

On the other hand, for every 𝑣 ∈ 𝐿2([𝑡0, 𝑡0 + 𝑇], 𝐾), we have 

|∫ ⟨𝑣(𝑡) − 𝐺(𝑥𝑙𝑚(𝑡), 𝑢𝑙𝑚(𝑡)), 𝑢𝑙𝑚(𝑡)⟩𝑑𝑡
𝑡0+𝑇

𝑡0

− ∫ ⟨𝑣(𝑡) − 𝐺(𝑥(𝑡), 𝑢(𝑡)), 𝑢(𝑡)⟩𝑑𝑡
𝑡0+𝑇

𝑡0

| 

≤ |∫ ⟨𝑣(𝑡) − 𝐺(𝑥𝑙𝑚(𝑡), 𝑢𝑙𝑚(𝑡)), 𝑢𝑙𝑚(𝑡)⟩𝑑𝑡
𝑡0+𝑇

𝑡0

− ∫ ⟨𝑣(𝑡) − 𝐺(𝑥(𝑡), 𝑢(𝑡)), 𝑢𝑙𝑚(𝑡)⟩𝑑𝑡
𝑡0+𝑇

𝑡0

| 

+ |∫ ⟨𝑣(𝑡) − 𝐺(𝑥(𝑡), 𝑢(𝑡)), 𝑢𝑙𝑚(𝑡)⟩𝑑𝑡
𝑡0+𝑇

𝑡0

− ∫ ⟨𝑣(𝑡) − 𝐺(𝑥(𝑡), 𝑢(𝑡)), 𝑢(𝑡)⟩𝑑𝑡
𝑡0+𝑇

𝑡0

| 
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It follows that as 𝑙𝑚 → 0, 

|∫ ⟨𝑣(𝑡) − 𝐺(𝑥𝑙𝑚(𝑡), 𝑢𝑙𝑚(𝑡)), 𝑢𝑙𝑚(𝑡)⟩𝑑𝑡
𝑡0+𝑇

𝑡0

 

− ∫ ⟨𝑣(𝑡) − 𝐺(𝑥(𝑡), 𝑢(𝑡)), 𝑢(𝑡)⟩𝑑𝑡
𝑡0+𝑇

𝑡0
| → 0.             (4-5) 

Then 

∫ ⟨𝑣(𝑡) − 𝐺(𝑥(𝑡), 𝑢(𝑡)), 𝑢(𝑡)⟩𝑑𝑡
𝑡0+𝑇

𝑡0
≥ 0.            (4-6) 

𝑥𝑙𝑚 → 𝑥 implies that 

𝑥(𝑡0 − 𝑠) = 𝜑(𝑠),    ∀𝑠 ∈ [−𝜏, 0].                (4-7) 

Therefore, by the formula (4-4), (4-6) and (4-7), we obtain  (𝑥, 𝑢) ∈

𝑆𝑂𝐿(DDIVI(2 − 1)). 

5    Numerical Experiment 

In Section 5, a numerical example is given to verify the effectiveness of 

the algorithm introduced in Section 4. 

Example 5.1 Let 

{
𝑓(𝑥(𝑡 − 𝜏), 𝑢(𝑡)) = 𝑥(𝑡 − 0.4)𝑢(𝑡),    𝜑(𝑡) = 𝑡2,
𝐺(𝑥(𝑡), 𝑢(𝑡)) = 𝑥(𝑡) − 0.1𝑢(𝑡),          𝐾 = [0,4].

 

For every 𝑡 ∈ [−0.4,3], 

{

𝑥̇(𝑡) = 𝑥(𝑡 − 0.4) ⋅ 𝑢(𝑡),                                                          ∀𝑡 ∈ [0,3],

(𝑥(𝑡) − 0.1𝑢(𝑡)) ∈ [0,4],    ⟨𝑣 − 𝑥(𝑡) + 0.1 ⋅ 𝑢(𝑡), 𝑢(𝑡)⟩ ≥ 0,    ∀𝑣 ∈ [0,4],

𝑥(𝑡) = 𝑡2,                                                                        ∀𝑡 ∈ [−0.4,0].

   

(5-1) 

In the following, we will use the Euler time-stepping method given in 

Section 4 and show the specific iterations together with Example 5.1. 

Algorithm 5.1 

Step 0: Divide the time interval [−0.4,3] into small intervals with 

each of length 𝑙 = 0.05. 
𝑡𝑙,−8 = −0.4 < 𝑡𝑙,−7 = −0.35 < 𝑡𝑙,−6 = −0.3 < ⋯ < 𝑡𝑙,−1 = −0.05 

< 𝑡𝑙,0 = 0 < 𝑡𝑙,1 = 0.05 < ⋯ < 𝑡𝑙,58 = 2.9 < 𝑡𝑙,59 = 2.95 < 𝑡𝑙,60 = 3. 

Step 1: Let 𝑥𝑙,−8 = 𝜑(𝑡𝑙,−8) = 0.16. Compute 𝑢 = 𝑢𝑙,−8, which 

satisfies the following variational inequality, 

(𝑥𝑙,0 + 0.1 ⋅ 𝑢) ∈ [0,4],    ⟨𝑣 − 𝑥𝑙,0 + 0.1 ⋅ 𝑢, 𝑢⟩ ≥ 0,    ∀𝑣 ∈ [0,4]. 

Step 2: Take 𝑘 = [
𝜏

𝑙
] =

0.4

0.05
= 8. When −8 < 𝑖 ≤ 0, let 

𝑥𝑙,𝑖+1 = 𝑥𝑙,𝑖 + 𝑙 ⋅ 𝑓(𝜑(𝑡𝑙,𝑖), 𝑢𝑙,𝑖) 

       = 𝑥𝑙,𝑖 + 𝑙 ⋅ (𝑡𝑙,𝑖)2 ⋅ 𝑢𝑙,𝑖 . 

Compute 𝑢 = 𝑢𝑙,𝑖+1, which satisfies the following variational inequality, 

(𝑥𝑙,𝑖+1 + 0.1 ⋅ 𝑢) ∈ [0,4],    ⟨𝑣 − 𝑥𝑙,𝑖+1 + 0.1 ⋅ 𝑢, 𝑢⟩ ≥ 0,    ∀𝑣 ∈ [0,4].      

(5-2) 

Step 3: When 0 < 𝑖 ≤ 𝑘, let 

𝑥𝑙,𝑖+1 = 𝑥𝑙,𝑖 + 𝑙 ⋅ 𝑓(𝜑(𝑡𝑙,𝑖−𝑘), 𝑢𝑙,𝑖) 

       = 𝑥𝑙,𝑖 + 𝑙 ⋅ (𝑡𝑙,𝑖−𝑘)2 ⋅ 𝑢𝑙,𝑖 . 

Compute 𝑢 = 𝑢𝑙,𝑖+1, which satisfies the following variational inequality, 

(𝑥𝑙,𝑖+1 + 0.1 ⋅ 𝑢) ∈ [0,4],    ⟨𝑣 − 𝑥𝑙,𝑖+1 + 0.1 ⋅ 𝑢, 𝑢⟩ ≥ 0,    ∀𝑣 ∈ [0,4].      

(5-3) 

Step 4: When 𝑘 < 𝑖, let  

𝑥𝑙,𝑖+1 = 𝑥𝑙,𝑖 + 𝑙 ⋅ 𝑓(𝑥𝑙,𝑖 , 𝑢𝑙,𝑖) 

       = 𝑥𝑙,𝑖 + 𝑙 ⋅ 𝑥𝑙,𝑖−𝑘 ⋅ 𝑢𝑙,𝑖 . 

Compute 𝑢 = 𝑢𝑙,𝑖+1 which satisfies the following variational inequality, 

(𝑥𝑙,𝑖+1 + 0.1 ⋅ 𝑢, ) ∈ [0,4],    ⟨𝑣 − 𝑥𝑙,𝑖+1 + 0.1 ⋅ 𝑢, 𝑢⟩ ≥ 0,    ∀𝑣 ∈ [0,4].

      (5-4) 

6    conclusions 

In this article, we introduced and studied a class of delay differential in-

verse variational inequality consisted of inverse variational inequality 

and a system of delay differential equation. We gave the sufficient condi-

tions to prove the existence of Carathéodory weak solution. Also, an al-

gorithm was given to find the Carathéodory weak solution and the con-

vergence was shown. 

Furthermore, it is essential to take advantage of the conclusions of this 

article to consider the problems of upper management constrained by a 

system of delay differential equation and time-dependent spatial price 

equilibrium control with time delay. 
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