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Abstract 

DNA analysis is now a data intensive discipline.  New technology has transformed biomedical research by making a plethora of 

molecular data available at reduced costs and great speeds. Large consortiums and many individual laboratories have already generated 

vast datasets: as an example, one such database, the Gene Expression Omnibus (GEO contains more than 1.8 million samples. This 

data is readily, publicly available but analyzing it requires computational and statistical resources. 

A popular concern in biological research is to identify those genomic pathways that are related to the organism’s reaction to treatment 

or disease.  There are numerous techniques that try to reduce the false positive errors and rank the pathways according to the degree 

of the phenotype relationship strength.  This goal is accompanied by several challenges:  finding parsimonious models with a good 

balance between simplicity and complexity and designing methods for pathway selection using appropriate significance thresholds. 

Often, it is difficult to escape the temptation of "ad-hoc" procedures that may work for particular examples but cannot be properly 

expanded to general cases. 

Over the years, many methods have been proposed but over-representation analysis (ORA) remains the most popular.  The underlying 

assumption of ORA is that pathways with an irregular number of differentially expressed genes are responsible for the phenotype to 

the detriment of lesser differentially expressed pathways. Under the umbrella of logistic regression, we propose a method that aims to 

improve ORA.  We show that traditional hypergeometric ORA methods are fully described by and can be considered a special case of 

the logistic regression methods. Logistic regression presents the advantage that while it produces simple models, they are richer, and 

they describe the biological process in a more accurate fashion. While logistic regression has been proposed before as a solution for 

ORA, we prove the over-encompassing nature of the method and we also propose a flavor of regression that can be aimed at different 

scenarios.  Furthermore, logistic regression has a solid mathematical basis and produces results that have biological justification. 
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1 Introduction  

Genomic pathway analysis places high importance on finding the path-

ways that are related to the phenotype that is being studied. 

For the purposes of this paper, we define a pathway as a collection or sub-

set of genes with a common biological process or molecular function.  The 

subset definition is implicit in over-representation analysis (ORA) and we 

do not take into consideration any other biological characteristics of path-

ways.  Pathway information for various organisms has been collected and 

summarized and has been made publicly accessible on public knowledge 

bases like KEGG [9], MetaCyc [10], Reactome [8], and others. 

Several techniques have been developed for pathway analysis:  over-rep-

resentation analysis (ORA),  functional class scoring (FCS) and topology-

based are some of the most popular types of methods used. These methods 

are well known and their strengths and weaknesses have been discussed 

and compared [12] 

Although the oldest method, ORA is still very popular as it produces sim-

ple models that are easy to interpret. GSEA (Gene Set Enrichment Analy-

sis) [19] is a popular functional class scoring (FCS) method that produces 

an aggregated pathway level enrichment score and by permuting gene la-

bels makes the need for a significance threshold obsolete. Topology based 

methods, like the bioconductor SPIA package [20] also take into consid-

eration information about how genes interact with each other (inhibition, 

activation, etc.). 

For the remainder of this paper, we will focus our attention on ORA. The 

basic idea of ORA methods is summa- rized by name "over-representation 

analysis": the underlying assumption is that a pathway that contains a 

larger than expected number of differentially expressed genes is more rel-

evant to the biological process [4, 11].  Therefore, the crux of the problem 

becomes finding a method that correctly identifies pathways that have an 

elevated level of gene expression. The many tools that fall under the um-

brella of ORA usually produce a Fisher exact test. 

Most of the time, ORA is able to correctly identify relevant pathways, rank 

them according to importance and it has been proven to be effective in 

various practical situations, but ORA also presents a few challenges that 
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need to be overcome:  for certain cases, it produces false positive results 

when non-relevant pathways are singled-out as important  or  false  nega-

tive  results,  by  ignoring  important  pathways  for  the  phenotype.   By  

ignoring  the  fact  that some pathways share many genes, ORA clouds the 

pathway significance distinction:  for example, some pathways will falsely 

appear significant just because they overlap other truly significant path-

ways [6, 14]. Procedures have been proposed to augment ORA to address 

the issues that arise because of the overlap between pathways [3, 21]. Re-

gression has already been proven to be successful in modelling similar 

processes to the ones described in [22, 16, 18]; 

Overlapping pathways do represent an important problem in need of a 

simple solution, as it is not clear what effect the common genes have on 

each pathway.  Many times, these common genes only account for basic 

metabolic processes (e.g., energy processing) and their function is not re-

lated to the studied phenotype. 

We start by showing, analytically, that ORA methods can be considered a 

subset of logistic regression analysis. Simple ORA many times gets re-

duces to a Fisher exact test and the supplemental material for [18] does 

discuss the similarity between logistic regression and Fisher’s test, but 

only focuses on simulations to compare the two methods. We remind the 

reader that exact logistic regression can be reduced to a Fisher exact test 

and we show how the two procedures test the same hypotheses at the 

model level and they are also identical at the data level.   We will also 

show that any combination of pathways (module) can be expressed by a 

regression model, so even an enhanced ORA analysis will still be a special 

case of regression. 

Then, we will propose a variation of the broader concept of logistic re-

gression and we will show that this model improves on some over-repre-

sentation analysis traps and it may also may point to pathway modules that 

have not been given proper attention in prior studies. Therefore, regression 

produces simple models, not as simple as ORA but more rich and more 

accurate as it retains more of the characteristics of the underlying process.  

 

2 Methods 

We illustrate how we can slightly modify logistic regression to improve 

on ORA results.  The results on the real data presented in this section show 

that the proposed method provides reasonable results compared to ORA. 

The collection of pathways was downloaded from the KEGG database, 

Release 55. Newer releases of course will affect the results. 

 

The first data set on which  we  tested  the  method  comes  from  an  

experiment  investigating  cellular  and  metabolic plasticity of white fat 

tissue (WAT), which stores lipid energy.  This experiment, studies the 

transformation of WAT, under certain physiological and pharmacological 

conditions, into one resembling brown fat, a thermogenic organ[6, 15]. 

The data set used for the classical over-representation analysis (ORA) 

was obtained from a microarray analysis of white fat from mice treated 

with low dose (0.75 nmol/hr) CL 316,243 (CL) for 0 and 7 days.  More on 

the biological aspects of this phenomenon can be found in the literature  

[15, 17, 6] The genes were ordered by p-value and the top 5% were se-

lected as differentially expressed (DE). 

According to the classical ORA analysis, (Table 3a) of the first com-

parison, the pathways with a p-values smaller than 0.01 after FDR correc-

tion are Parkinson’s, Alzheimer’s, Huntington’s, Leishmaniasis, Phago-

some, Cell Cycle, Oocyte Meiosis, Cardiac Muscle Contraction, Toll-like 

receptor, and PPAR Signaling. Pathways with p-value smaller than 0.05 

after FDR correction are Chemokine Signaling Pathway, Lysosome, B 

Cell Receptor, Systemic Lupus Ery- thematosus, Complement and Coag-

ulation Cascades, Cytokine Cytokine Receptor Interaction, and Chagas 

Disease. The list of pathways with their associated corrected p-value is 

summarized in Table 3a. 

The immediate problem with the classification in Table 3a is that the 

theoretical results do not match the bio- logical observations: pathways 

like Parkinson’s disease, Alzheimer’s disease, and Huntington’s disease 

are related to degenerative diseases of the central nervous system and ob-

vious or apparent connection fat remodeling; Leishmaniasis describes the 

protozoan parasitic disease, a disease spread by sand flies. These four 

pathways do not have any known relationship to the phenomenon under 

study, yet they are listed at the top of the ORA ranking.  Other pathways 

like Cell cycle and p53 Signaling pathway are more likely to be related to 

fat remodeling but they are listed lower in the ranking. 

 

2.1 Simple over-representation analysis 

 

Simple over-representation analysis considers the level of expression in 

one pathway against everything else outside the selected pathway. With-

out loss of generality, suppose the interest pathway is pathway 1, called 

𝑃𝑎𝑡ℎ𝑤𝑎𝑦1. Let us consider the table 1, that describes the information 

about gene expression and pathway 𝑃𝑎𝑡ℎ𝑤𝑎𝑦1 gene composition.   

𝑌𝑖  are independent Bernoulli random variables and let us consider 

Pr(𝑌𝑖 = 1|𝑋𝑖1 = 1) = 𝜋1 and Pr(𝑌𝑖 = 1|𝑋𝑖1 = 0) = 𝜋0, for all 𝑖 =

1, … , 𝑔. The information in 1 can be summarized in a contingency table 

like 1 and usually a hypergeometric statistic is calculated from it. 

  Observed   Pathway 1  

Gene Label   Expression   Indicator  

  (binary)   (binary)  

1  𝑌1    𝑋11  

2  𝑌2   𝑋21  

3  𝑌3   𝑋31  

⋮   ⋮   ⋮  

g   𝑌𝑔   𝑋𝑔1  

Table 1: Single interest pathway, P1. Gene expression model 

 

  𝐷𝐸   𝐷𝐸𝑐
   Total 

𝑃1    𝑑1    𝑔1 − 𝑑1    𝑔1  

𝑃1
𝑐

   𝑑 − 𝑑1    (𝑔 − 𝑑) − (𝑔1 − 𝑑1)   𝑔 − 𝑔1  

Total   𝑑   𝑔 − 𝑑    𝑔  

Table 2: ORA contingency table. Standard over-representation ap-

proach contingency table; 𝑔1 and 𝑔 represent, respectively, the number of 

genes belonging to pathway 𝑃1 and the total number of genes. 𝑑1 and 𝑑 

represent, respectively, the number of differentially expressed genes be-

longing to pathway 𝑃1  and the total number of DE genes.  

 

Considering the defined probabilities above, we observe that 

𝑑1~𝐵𝑖𝑛(𝑔𝑝, 𝜋1) and 𝑑 − 𝑑1~𝐵𝑖𝑛(𝑔 − 𝑔1, 𝜋0). 

At this point, the researcher usually needs to make a decision about the 

degree of extremeness of this observation. The question is: how probable 

is it, that by random chance alone, more than 𝑑𝑖  differentially expressed 

genes would be observed on a pathway? The concept of calculating a p-

value naturally develops. 

Usually, for a 2x2 contingency table like 1, the researcher has two op-

tions for a statistical test: a chi-square test or a Fisher exact test. The chi-

square test does provide good asymptotic approximations and it is compu-

tationally fast. The Fisher test on the other hand provides an exact p-value 

and since computers are getting faster and faster, it is increasingly popular.  
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By [12], the odds ratio, 𝜌 and under the null hypothesis 𝐻0: 𝜋1 = 𝜋0, 

we have: 

Pr(𝑑1 = 𝑥|𝑑 = 𝑑𝑡) =
(

𝑔1
𝑥

)(
𝑔−𝑔1
𝑑−𝑑1

)

(
𝑔
𝑑𝑡

)
 , where 𝜌 =

𝜋1
(1−𝜋1)

𝜋0
(1−𝜋0)

 

 

Considering the null hypothesis to be true, for our experiment, the right 

sided p-value is defined as the probability of obtaining a higher proportion 

of differentially expressed genes than the observed proportion. We reject 

𝐻0 at significance level 𝛼 when 𝑑1 ≥ 𝐶(𝛼)(𝑑) where 𝐶(𝛼)(𝑑𝑡) is the small-

est integer for which 𝑃0{𝑁𝑇1 ≥ 𝐶(𝛼)(𝑑)|𝑑 = 𝑑𝑡} ≤ 𝛼 if such 𝐶(𝛼)(𝑑𝑡) ex-

ists. If it does not exist then let 𝐶(𝛼)(𝑑𝑡) = ∞. 

Calculating a two-sided p-value is not as straightforward as in the case 

of symmetric distributions and there are at least two ways of calculating 

it. The simplest is to consider 2 min(𝑝, 1 − 𝑝) [22]; this method has the 

disadvantage of being too conservative and in some cases producing a p-

value greater than 1. The other option is to calculate p-values for all the 

2x2 contingency tables with p-values less than the observed p-value [6]. 

A discussion of the various methods has been realized in [4]. 

Logistic regression does describe this simple case. Logistic regression 

is used for describing models involving categorical response variables. 

When the response variable is categorical, logistic regression is preferred 

over linear regression for multiple reasons and the most important two 

reasons are: 

  

    • Linear regression produces predictions that fall outside the categor-

ical response variable’s range.  

    • The linear regression error terms are not normally distributed. This 

is an assumption of linear regression and the categorical nature of the re-

sponse variable makes this assumption untenable from the start.  

 

Linear regression makes use of the least squares method to find param-

eter estimates. The least squares method is not applicable for logistic re-

gression which uses maximum likelihood estimation in order to estimate 

its parameters.  

 

2.2 The logistic regression model 

 

Table  3:  Multiple interest pathways. Gene expression model 

 

Consider the dataset in Table 3.    

Let 𝐗𝑖  represent a binary representation of 𝑃𝑎𝑡ℎ𝑤𝑎𝑦𝑖 . 𝐗𝑖 , where 𝑖 ∈

{1, … , 𝑘} are vectors of length 𝑔 where 𝑋𝑖𝑗 = 1 if gene 𝑗 is present on the 

pathway 𝑖 and 𝑋𝑖𝑗 = 0, otherwise, for all 𝑗 ∈ {1, … , 𝑔}. 

We consider 𝐘 a 𝑔 length column vector of random binomial variables 

𝑌𝑖 . For our purposes, 𝑌𝑖  can take a value of either 1 or 0 and it signifies 

whether gene 𝑖 is differentially expressed or not ( 1 or 0, respectively). Let 

𝑦 represent a 𝑔 length observed values vector corresponding to the random 

variable vector 𝐘. Let 𝚷 represent a 𝑔 length probability vector. Let 𝜃 be 

the parameter vector of length 𝑘 + 1. 𝜃 contains a parameter for each vec-

tor 𝐗𝑖  and 𝜃0 for the intercept term. 

Then the logit model becomes: 

 

Logit(𝜋𝑖) = log (
𝜋𝑖

1 − 𝜋𝑖

) = ∑

𝑘

𝑗=0

𝜃𝑗𝑋𝑖𝑗 ,   𝑓𝑜𝑟  𝑖 ∈ {1, … , 𝑔} 

 

2.3 Logistic regression, parameter estimation using MLE 

 

Since 𝐘 is a vector of binomial variables, the likelihood function for 𝐘 

becomes: 

 

𝐿(𝜃|𝐲) = ∏

𝑔

𝑖=1

𝜋𝑖

𝑦𝑖(1 − 𝜋𝑖)
1−𝑦𝑖  

So, 

 

𝐿(𝜃|𝐲) = ∏

𝑔

𝑖=1

(
𝜋𝑖

1 − 𝜋𝑖

)
𝑦𝑖

(1 − 𝜋𝑖) 

Since  

Log (
𝜋𝑖

1 − 𝜋𝑖

) = ∑

𝑘

𝑗=0

𝜃𝑗𝑋𝑖𝑗 

we can rewrite the likelihood function as  

𝐿(𝜃|𝐲) = ∏

𝑔

𝑖=1

(𝑒∑𝑘
𝑗=0 𝜃𝑗𝑋𝑖𝑗)𝑦𝑖 (1 −

𝑒∑𝑘
𝑗=0 𝜃𝑗𝑋𝑖𝑗

1 + 𝑒∑𝑘
𝑗=0 𝜃𝑗𝑋𝑖𝑗

) 

and 

 

𝐿(𝜃|𝐲) = ∏

𝑔

𝑖=1

(𝑒∑𝑘
𝑗=0 𝜃𝑗𝑋𝑖𝑗)𝑦𝑖 (1 + 𝑒∑𝑘

𝑗=0 𝜃𝑗𝑋𝑖𝑗 )−1 

We need to find the maximum of the likelihood function. This involves 

finding the first derivative and setting it equal to 0. Once a solution is 

found, we need to find the second derivative. If the second derivative eval-

uated at the solution is positive then we found a maximum. 

Since this function is still difficult to differentiate, the log likelihood 

function is used. Since the log function is monotonic, applying log to the 

likelihood function will not affect the solution of the initial function. 

 

𝑙(𝜃|𝐲) = ∑

𝑔

𝑖=1

𝑦𝑖 ∗ ∑

𝑘

𝑗=0

𝜃𝑗𝑋𝑖𝑗 − log (1 + 𝑒∑𝑘
𝑗=0 𝜃𝑗𝑋𝑖𝑗) 

Taking derivatives with respect to each one of the parameters produces: 

 

𝛿

𝛿𝜃𝑗

𝑙(𝜃|𝐲) = ∑

𝑔

𝑖=1

𝑦𝑖𝑋𝑖𝑗 − 𝜋𝑖𝑋𝑖𝑗 

If we set each derivative to 0 we are reduced to solving a system of k+1 

equations and k+1 unknowns. 

Solving such a system usually requires numerical methods. 

2.4 Exact logistic regression 

Exact logistic regression adopts a quite different approach on inferring 

the parameter vector 𝜃. 

 Observed Pathway 1 Pathway 2  Pathway 𝑘 

Gene 

Label 

Expression Indicator Indicator  Indicator 

 (binary) (binary) (binary) ... (binary) 

1 𝑌1  𝑋11 𝑋12 ... 𝑋1𝑘 

2 𝑌2 𝑋21 𝑋22 ... 𝑋2𝑘 

3 𝑌3 𝑋31 𝑋32 ... 𝑋3𝑘 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 

g 𝑌𝑔 𝑋𝑔1 𝑋𝑔2 ... 𝑋𝑔𝑘 
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While the maximum likelihood estimate uses an asymptotic approach, 

the "exact" method provides a different perspective approach on this prob-

lem. 

Unlike the asymptotic approach, exact inference has the advantage that 

it provides an exact solution for all sample sizes and it does not make any 

assumptions about the sample size. The disadvantage of the exact solution 

is that it is computationally intensive. Although in the past, the exact so-

lution was mostly applied for small sample sizes, the computational 

speeds of today’s computers make it more appealing and its popularity is 

increasing. 

The idea behind this approach is: 

  

    • find a sufficient statistic for the 𝜃 parameter vector; showing the 

statistic is sufficient is done using the Fisher-Neyman factorization 

theorem.  

    • then, using the sufficiency principle, we can condition on some of 

the sufficient statistic components; this way we can control the se-

lect parameters that the conditional probability depends on.  

    • considering a constrained event space, we count the sample points 

and compute a p-value.  

 

The likelihood conditional function is: 

 

𝐿(𝜃|𝐲) = ∏

𝑔

𝑖=1

(𝑒∑𝑘
𝑗=0 𝜃𝑗𝑋𝑖𝑗)𝑦𝑖 (1 + 𝑒∑𝑘

𝑗=0 𝜃𝑗𝑋𝑖𝑗 )−1 

A sufficient statistic for 𝜃 is : 

 

𝑡 = 𝑦′𝑋 

So the conditional distribution of 𝜃 is: 

 

Pr(𝑇1 = 𝑡1, 𝑇2 = 𝑡2, … , 𝑇𝑘 = 𝑡𝑘) =
𝑐(𝐭)𝑒𝜃′𝐭

∑𝐮 𝑐(𝐮)𝑒𝜃′𝐮
 

where 𝑐(𝑡) is the number of distinct sets of 𝑦 that give the same value 

for our sufficient statistic 𝑡 and the denominator is summed over all 𝑢 such 

that 𝑐(𝑢) ≥ 1. 

If we want to make inferences about one parameter, let us pick 𝜃1, with-

out loss of generality, then we can consider 

 

Pr(𝑇1 = 𝑡1|𝑇2 = 𝑡2, … ) = Pr(𝑇1|𝜃1) =
𝑐(𝑡1, 𝑡2, … , 𝑡𝑘)𝑒𝜃1𝑡1

∑𝑢 𝑐(𝑡2, 𝑡3, … , 𝑡𝑘 , 𝑢)𝑒𝜃𝑝𝑢 

We can use this probability to make inferences about 𝜃1. 

For, example if the hypothesis to test is 𝐻0: 𝜃1 = 0 then we can calcu-

late an 

exact p-value by summing over the critical region C. 

 

∑

𝑐(𝑡)∈𝐶

Pr(𝑐(𝑡)|𝜃1 = 0) 

. 

2.6 Fisher’s exact test vs. Exact logistic regression 

 

We will show, for a simple case, that Fisher’s exact test and exact lo-

gistic regression are the same at the model level and they produce the same 

results at the data level. We consider 𝐘 to be the response vector variable 

and 𝐗1 a predictor vector variable, corresponding to pathway 𝑃𝑎𝑡ℎ𝑤𝑎𝑦1 . 

 

 

 

Model comparison 

Let us assume, like before that Pr(𝑌𝑖 = 1|𝑃𝑎𝑡ℎ𝑤𝑎𝑦1) = 𝜋1 and 

Pr(𝑌𝑖 = 1|𝑃𝑎𝑡ℎ𝑤𝑎𝑦1
𝑐) = 𝜋0, for all 𝑖 = 1, … , 𝑔. 

We have already discussed how the null hypothesis for the Fisher exact 

test is:  

𝐻0: 𝜋1 = 𝜋0 

Let us show that the logistic regression hypothesis is identical to the 

Fisher null hypothesis. 

So, the logit model for one pathway is: 

 

Logit(𝜋1|𝑋𝑖1 = 1) = log (
𝜋1

1 − 𝜋1

) = 𝜃0 + 𝜃1𝑋𝑖1, 𝑖 ∈ {1, … , 𝑔} 

and 

 

logit(𝜋0|𝑋𝑖1 = 0) = log (
𝜋0

1 − 𝜋0

) = 𝜃0 + 𝜃1𝑋𝑖1,   𝑖 ∈ {1, … , 𝑔}. 

Therefore,  

𝑙𝑜𝑔𝑖𝑡(𝜋1) = 𝜃0 + 𝜃1 

and 

 

𝑙𝑜𝑔𝑖𝑡(𝜋0) = 𝜃0. 

The logistic regression null hypothesis is 𝜃1 = 0. 

Therefore, if 𝜃1 = 0 then logit(𝜋1) = logit(𝜋0) = 𝜃0  or 𝜋1 = 𝜋0 is an 

equivalent form of the hypothesis. 

 

Probability calculations 

 

We have already shown that the probability distribution calculated by 

the Fisher exact test is:  

Pr(𝑑1 = 𝑥|𝑑 = 𝑑𝑡) =
(

𝑔1

𝑥
) (

𝑔 − 𝑔1

𝑑 − 𝑑1
)

(
𝑔
𝑑𝑡

)
 

 

On the other hand, the exact logistic regression model calculates the 

conditional distribution of 𝜃: 

 

Pr(𝑇1 = 𝑡1|𝑇0 = 𝑡0, … ) = Pr(𝑇1|𝜃1) =
𝑐(𝑡1, 𝑡2, … , 𝑡𝑘)𝑒𝜃1𝑡1

∑𝑢 𝑐(𝑡2, 𝑡3, … , 𝑡𝑘 , 𝑢)𝑒𝜃𝑝𝑢 

where 𝑐(𝑡) is the number of distinct sets of 𝑦 that give the same value 

for our sufficient statistic 𝑡 and the denominator is summed over all 𝑢 such 

that 𝑐(𝑢) ≥ 1. 

For the simple case of one expressed pathway 𝑃1 , we will show that the 

two probability distributions are the same. 

First of all, we will establish some correspondences between the quan-

tities defined by the two methods. 

𝑡0 and 𝑡1 are defined as sufficient statistics for 𝜃0 and 𝜃1, respectively. 

𝑡0 = ∑

𝑔

𝑖=1

𝑦𝑖 . 

𝑡1 = ∑

𝑔

𝑖=1

𝑦𝑖 ∗ 𝑋𝑖1 
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So finding the probability that 𝑇1 = 𝑡1 corresponds to 𝑑1 = 𝑥 in the 

Fisher procedure. 

So conditioning on 𝑇0 = 𝑡0 is the same as conditioning on 𝑑 = 𝑑𝑡 in 

the Fisher procedure. Therefore calculating 𝑃(𝑑1 = 𝑥|𝑑 = 𝑑𝑡) is the same 

as calculating 𝑃𝑟(𝑇1 = 𝑡1|𝑇0 = 𝑡0). 

Now 𝑐(𝑡) is the number of distinct sets of 𝑦 that give the same value 

for our sufficient statistic 𝑡. That is exactly what the product 

(
𝑔1

𝑥
) (

𝑔 − 𝑔1

𝑑 − 𝑑1
) calculates. 

 

2.7 Simulation and comparison  

 

Applying both methods to the same dataset produces similar results. [1] 

on page 253 makes a comparison between the two methods. 

As an example, let us consider a simple table: 

   

 Observed Pathway 1 

Gene Label Expression Indicator 

 (binary) (binary) 

1 1 1 

2 1 1 

3 1 1 

4 0 1 

5 0 0 

 

   Exact logistic and fisher’s exact test produce identical p-values (the 

right sided p-value is 0.4).  

 

2.8 Logistic regression fully encompasses ORA  

So far, we have shown that logistic regression can be configured to ex-

press an identical model to ORA and we have proven this both analytically 

and through a simulation. Furthermore, in the Supplemental Material, we 

show that a multiple logistic regression  with interactions can be config-

ured to model any complex  configuration of overlapping pathways, thus 

it can be used even for situations that exceed ORA’s modelling capabili-

ties. 

3 Results. Application of our modified logistic 

model to a real experimental dataset 

We illustrate how we can slightly modify logistic regression to improve 

on ORA results. The results on the real data presented in this section show 

that the proposed method provides reasonable results compared to ORA. 

The collection of pathways was downloaded from the KEGG database, 

Release 55. Newer releases of course will affect the results. 

 

 

 

3.1 Removing the false positives using logistic regression predic-

tions 

 

We tested the method on a dataset that comes from an experiment in-

vestigating cellular and metabolic plasticity of white fat tissue (WAT), 

which stores lipid energy. This experiment, studies the transformation of 

WAT, under certain physiological and pharmacological conditions, into 

one resembling brown fat[5, 14]. 

The data set used for the classical over-representation analysis (ORA) 

was obtained from a microarray analysis of white fat from mice treated 

with low dose (0.75 nmol/hr) CL 316,243 (CL) for 0 and 7 days. More on 

the biology of this phenomenon can be found in the literature  [14, 16, 5] 

The genes were ordered by p-value and the top 5% were selected as dif-

ferentially expressed (DE). 

According to the classical ORA analysis, (Figure 3a) of the first com-

parison, the pathways with a p-values smaller than 0.01 after FDR correc-

tion are Parkinson’s, Alzheimer’s, Huntington’s, Leishmaniasis, Phago-

some, Cell Cycle, Oocyte Meiosis, Cardiac Muscle Contraction, Toll-like 

receptor, and PPAR Signaling. Pathways with p-value smaller than 0.05 

after FDR correction are Chemokine Signaling Pathway, Lysosome, B Cell 

Receptor, Systemic Lupus Erythematosus, Complement and Coagulation 

Cascades, Cytokine Cytokine Receptor Interaction, and Chagas Disease. 

The list of pathways with their associated corrected p-value is summarized 

in Figure 3. 

 

The immediate problem with the classification in Figure 3a is that the 

theoretical results do not match the biological observations: pathways like 

Parkinson’s disease, Alzheimer’s disease, and Huntington’s disease are 

Figure 2 Pathway overlaps.. A logistic regression model is run and 

pathways are ordered by increasing p-value and genes are ranked de-

creasingly on their predicted probability of expression. For this figure, 

we only retain the top 6 pathways that have significant p-values. Then, 

genes are grouped 100 at a time and we keep track of the number of 

genes that belong to each of the top six pathways. We observe how 

pathways like Renal cell carcinoma, Melanoma, Gap junction share 

many top ranked genes. Because of this overlap, we will discount the 

overlapping pathways, and we will retain pathways PPAR signaling or 

Fanconi anemia pathway that contain unique modules of genes. 

 

Figure 1 A plot of the predicted gene probability of expression against 

normal quantiles. All genes have been ranked in decreasing order by 

their predicted probability of expression. These probability have been 

plotted against the normal quantiles. 
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related to degenerative diseases of the central nervous system and obvious 

or apparent connection fat remodeling; Leishmaniasis describes the pro-

tozoan parasitic disease, a disease spread by sand flies. These four path-

ways do not have any known relationship to the phenomenon under study, 

yet they are listed at the top of the ORA ranking. Other pathways like Cell 

cycle and p53 Signaling pathway are more likely to be related to fat re-

modeling but they are listed lower in the ranking. 

 

3.2 Logistic regression improves the overlapping pathways prob-

lem 

Our method aims to apply logistic regression and improve the results of 

ORA. Our assumption is that genes that belong to overlapping regions 

conceal the true signal and the analysis should focus on highly expressed, 

but unique genes that belong to only one pathway. We proceed to identify 

these unique genes. 

At first, we ran a stepwise logistic regression analysis and pathways 

have been ranked according to their p-values (Figure  3b).   The regression  

analysis  also  produces  probability  predictions  for  each  gene  and  the  

genes  have  been ranked according to the expression probabilities that 

have been predicted by the model. In Figure 1, the predicted gene expres-

sion ranking shows how a group of seven genes at the top have a predicted 

probability of expression noticeably higher than the rest of the genes. This 

observation again points to the idea that there are distinct modules of genes 

that share their predicted probability of expression. 

 

We then proceed to analyze the top pathways in our ranking in Figure 

3b) and we eliminate the pathways that share large modules of highly ex-

pressed genes.  In Figure 2, pathways like Renal cell carcinoma, Mela-

noma share many genes with other pathways, like PPAR signaling path-

way and Fanconi anemia. 

By discounting the overlapped genes, our method can filter out path-

ways like Renal cell carcinoma, Melanoma as false positives and it points 

to PPAR signaling pathway and Fanconi anemia as involved in the fat re-

modeling process. These pathways have been proven to be important [6] 

for fat metabolism. 

 

4 Conclusion 

We have shown that logistic regression totally encompasses every case 

that ORA describes.  Furthermore, logistic regression is able to model any 

complex combination of overlapping pathways.  With some simple mod-

ifications, we also showed that our method is able to discount false posi-

tives from the top of the rankings.   We recommend our method for its 

simplicity and for situations where there are large overlaps between path-

ways. 
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