

Copyright © 2018 by authors and IBII. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

American Journal of Advanced Research, 2018, 2–1

December. 2018, pages 7-13

doi: 10.5281/zenodo.1410734

http://www.ibii-us.org/Journals/AJAR/

ISBN 2472-9264 (Online), 2472-9256 (Print)

The Development of a Game with Applications of Object-

oriented Programming Concepts

Yanzhi Huang1, Ting Zhang2, Ling Xu3,*,

1,2,3 Department of Computer Science and Engineering Technology, University of Houston – Downtown, USA.

*Email: xul@uhd.edu

Received on July 30, 2018; revised on August 28, 2018; published on September 1, 2018

Abstract

In this game development project, we explored effective ways of applying object-oriented programming technologies by making a

fun and exciting game called TH Tank. TH Tank is a 2D tank shooter game, which includes rich groups of entities with various

properties. In this paper, we introduce our design of the game’s core-mechanism, entity definitions, the graphical design of game

components, and a few innovative features. Our explorations can be helpful to the development of other games and applications

which may involve OOP techniques.

Keywords: Game Development, Object-oriented Programming

1 Introduction

Today, with the development of advanced technologies and their applica-

tions in games, games possess more and more fantastic and attractive

features. Playing games has become a ubiquitous part of many adults and

children’s lives (Granic et al., 2014). Although many of the people hold

negative opinions against games with concerns of the potential harm

from game playing including aggression, addiction, and depression

(Granic et al., 2014; Ferguson, 2013), the positive effects of games also

have received considerable attention from researchers (Gentile and An-

derson, 2006; Baranowski et al., 2013; Thompson, 2012). Games not

only can be used for entertainment purposes, but also contribute to com-

puter science teaching and learning (Cooper and Scacchi, 2015). Learn-

ing game development can greatly motivate student learning interest and

promote their critical thinking skills (Kosa, 2016)). In this paper, we

discuss the development of a game, with explorations of object-oriented

programming (OOP) concepts, which are important but usually challeng-

ing to computer science students in their university study.

Object-oriented programming is a programming paradigm based on

the idea of a collection of interacting objects (Dathan and Ramnath,

2015). A remarkable feature of OOP is its facilities to “the separation of

concerns”, a phase described by Dijkstra (Dijkstra, 1982) in 1974. The

separation of concerns can be interpreted as separating a program into

distinct objects, focused on the functionalities from their own points of

view (Glasser, 2009). Through the separation of concerns, we can encap-

sulate the knowledge of an object for the purpose of access authorization

and protection. In addition, the modularization via the objects makes
possible the components in one program being reused in other programs.

Due to

http://www.ibii-us.org/Journals/AJAR/
mailto:xul@uhd.edu

Y. Huang et al. / American Journal of Advanced Research 2018 2(1) 7-13

8

Figure 1. Upper: the game menu; lower: a screen shot of the game demo.

the above beneficial features, OOP has been widely used in many appli-

cations. Here we present an exploration of OOP techniques via game

development. Developing a video game usually requires knowledge from

various aspects, such as computer graphics, software engineering, artifi-

cial intelligence, and networks. Here we focus on introducing an applica-

tion of OOP concepts in developing a shooter game. Our game has enti-

ties (such as tanks, bullets, and timer) demonstrating distinct properties.

Those entities are defined as classes that encapsulate the attributes such

as color, and functionalities such as moving. There are also entities, such

as different tanks, sharing some common properties (such as appearance)

but different in other properties (such as power) and behaviors (such as

attacking and chasing mode). They are implemented by applying two

OOP concepts: inheritance and polymorphism. In addition to basic func-

tions of an action game, our game also possesses innovative features by

combining some strategy-based game elements. A few random elements

are included in the core mechanics, for uncertainties and fun of the game

play. Figure 1 shows two screenshots of our game demo.

Our work makes the following contributions. First, we successfully

applied the concepts and methodology of OOP in the development of an

action game; the experience can be helpful to the development of other

games and the applications which involve OOP techniques. Second, we

combined features from different game genres, which is a valuable ex-

ploration on game development ideas. Third, we introduce a game proto-

typing and implementation environment – Processing. It is effective in

teaching and studying game programming without a complicated user

interface and tedious parameter settings, but friendly to novice users. It is

worthwhile to mention that all the implementation work was done by an

undergraduate CS student, who initially had no OOP knowledge, with

instructions by a mentor. During the development process, we explored

effective methods for teaching and studying OOP, by relating the ab-

stract concepts to solid game entities and interactions. Although this is a

single case exploration, we believe it provides a good start and prepares

for our further work especially OOP teaching in computer science or

programming training in game industries. The rest of the paper is orga-

nized as follows. Following the introduction, the section of background

will introduce object-oriented programming concepts, related knowledge

about games and game development, and the game development tool that

we use. The details of our implementation work will be introduced in the

game design section. The last section includes a conclusion and also

proposes the future work.

2 Background

2.1 Motivation

The motivation of this project comes from the authors’ experience in

teaching and learning game programming where object-oriented pro-

gramming concepts cannot be avoided. Students often show high enthu-

siasm in game playing but feel frustrated in game programming. The

difficulties exist in the understanding of the abstract OOP concepts and

how to relate them to specific entities existing in the game world. A

common problem that we observed from class (according to the author’s

teaching experience in C++, Python, game programming, and object-

oriented programming with Java) is the lack of object-oriented thinking.

It is also a problem previously mentioned by Beck and Cunningham

(Beck and Cunningham, 1989). They pointed out that “the most effective

way of teaching the idiomatic way of thinking with objects is to immerse

the learner in the ‘object-ness’ of the material”, We believe the entities in

a game world can make “‘object-ness’ of the material” concrete and

resonant to university students, since everything in a game world is an

object such as the monsters, the coins, the obstacles, etc. For most of

students, they have the experience of game playing and can naturally

understand the objects and how they interact in an object-oriented way.

2.2 Related work

The game we decide to develop is a 2D shooter game with a top-down

perspective, due to the simplicity for novice game programmers. In

addition, it possess most of key game elements, including various entities

such as enemies and bullets, score system, timer, and collision detection

mechanism. The most important aspect that we care about is that the

implementation of the above elements will be initiated from the develop-

er’s object-oriented thinking, which is a valuable training to OOP study.

Figure 2. Upper: the game Asteroids; lower: the shooter game Nuclear

Throne. Both games are with a top-down perspective.

It is well known that shooter games are a subgenre of action games, one

of the most popular game genres that are familiar to many people. A

milestone of the early shooter games is Asteroids (as shown in the upper

of Figure 2) released in 1979 (Salen and Zimmerman, 2004). The objec-

tive of the game is to destroy asteroids and saucers by firing shots from a

player-controlled triangular spaceship. The spaceship can rotate left and

right with the player’s key presses. The player's score increases as aster-

oids and saucers are destroyed, and decreases as they hit the spaceship.

The Development of a Game with Applications of Object-oriented Programming Concepts

9

The game includes a few levels: once the screen is cleared with asteroids

and saucers, the next level starts with more challenges. Even the early

asteroids game does not have fancy visual effects, it includes the design

of variety and randomness for fun, which is an important feature in mod-

ern games (Bjork and Holopainen, 2005). For example, a big asteroid

can break into a few small asteroids when it is shot; the small ones move

faster and worth more points. The saucers also demonstrate different

properties and random behaviors. The above design helps to keep the

gameplay tension and player’s fading interest when the game playing

time progresses (Adams, 2009). Another example of the later shooter

games is Nuclear Throne released in 2015 (Devore, 2015). Compared

with the game Asteroids, it includes more various entities – totally 12

characters, each possessing unique abilities. Similar to Asteroids, it also

follows a linear level structure, which requires the player to progress

level by level until the game over. Undoubtedly Nuclear Throne pos-

sesses more interesting features, such as visual and sound effects, entity

behaviors, and the design of secrete characters. In the above two game

examples, we are interested in some features, such as the design of ran-

domness, variety of entities, and some fancy visual effects such as explo-

sion and fading. The most important reason for our decision of making a

shooter game similar to the above two examples is that, they are actually

simplified versions of larger games that possess necessary components

including rendering, physics, artificial intelligence, user control of a

character, and non-player characters. We incorporate the features in our

game design, and also add novel features from other game genres, in

order to make the game more interesting. The details are introduced in

section 3.

2.3 Development Tool

The tool that we use for game development is Processing (as shown in

Figure 3). Processing is an open source computer language and integrat-

ed development environment. Processing can be “used by students,

artists, designers, architects, and researchers for learning, prototyping,

and production” (Reas and Fry, 2014).

Figure 3. The Processing IDE and the window that shows the running

result. The program will draw a line in a window from a fixed point to

the mouse position dynamically.

We chose Processing as our programming tool is because it builds on the

Java language but with a simplified syntax, which helps students to focus

on the object-oriented thinking and game design rather than the language

syntax. Compared with Processing’s language, other game programming

tools such as XNA and Unity have higher requirement on the game

developer’s programming skills, which could be an obstacle for novice

game programmers such as students. In addition, Processing is not

focused on handling complicated graphical features - most of the

graphics produced in Processing is done by CPU instead of graphic card.

Codes to render images are much shorter and simpler in Processing,

compared with some industrialized graphic IDEs such as OpenGL. This

feature allows developers to fully focus on game design and program-

ming aspects other than rendering techniques. We also noticed other

elementary alternative tools such as scratch (Wolz, 2009) for game de-

velopment. However, we agree with Alfredo et al.’s (Alfredo et al.,

2017) opinion – there exists a few problems for using Scratch in teaching

an introductory programming language for a CS1 course in a videogames

major. A typical problem is the lack of necessary programming training

due to many manual manipulations.

3 Game Design and Implementation

3.1 Object-oriented thinking and implementation

Object-oriented thinking in our game project involves understanding the

entities in the game world, their attributes and behaviors, and the interac-

tions between each other. In the implementation level, we define the

above using the OOP concepts including abstraction, encapsulation,

inheritance, and polymorphism.

Abstract is a key concept of object-oriented programming, while the

intention is to reduce the programming complexity by hiding unneces-

sary implementation details (Dathan and Ramnath, 2015). Abstract is

accomplished with definitions of classes and their behaviors. In our

game, we create a few abstract object classes and their instances. In each

class, we specify the properties or behaviors. For example, we define a

class Bullet with a property of position coordinates and behavior of up-

dating its position with time.

Encapsulation is packing of the data and actions into a single package

(i.e. a class) and via this kind of data hiding can protect the data from

outside misuse or interference (Savitch, 2003). In our case, we interpret

encapsulation in terms of how the methods of an object are hidden from

other objects. For instance, the movement of the player tank is not

known to any enemy tank instance.

Inheritance is the mechanism that allows using of an existing class for

defining new classes; the new classes (i.e. subclasses) can inherit/share a

set of attributes and methods of the existing class (i.e. the parent class).

In our game, the general Tank class can be used to create specialized

classes representing various kinds of tanks such as PlayerTank and Ene-

myTank, and each subclass inherits the properties (such as position and

health) and methods (such as update of position and collision detection)

from the superclass Tank.

Polymorphism allows an operation to take different forms, based on

the object types. To be specific, in our case, the behavior of shooting

bullets differs in different types of tanks: regular tanks can shoot a regu-

lar bullet but have to wait for some time in order to cool down and shoot

the next. Boss tanks have high possibilities to shoot a power bullet, based

on some randomness settings. It is natural to define the function shoot-

Bullets differently for various tank classes.

Y. Huang et al. / American Journal of Advanced Research 2018 2(1) 7-13

10

In Table 1, we list major entities and their properties. More detailed

implementation of these entities and application of the above discussed

OOP features is shown in Figure 4.

Table 1. Description of Entities

Entity Description

Tank A tank has its center position, and four description points.

Those point together determine tank’s location and contour,

which will be use in collision detection and rendering. Other

properties include orientation, speed, status, health, bullet

loading time, aiming time, and visual appearance.

Player

Tank

It is a child class of the class Tank. It inherits all attributes

from the Tank class.

Enemy

Tank

It is a child class of Tank. It inherits all attributes from the

Tank class. There are three types of enemy tanks based on

their powers/weapons: regular weapon, laser weapon, and

the boss tank. They appear with the progression of levels.

Bullet Every bullet has its speed, position, and the damage value it

may cause.

Obstacle The static obstacles are buildings. They have positions,

appearances, and life durations.

Figure 4. UML diagram of the tank classes.

3.2 Game rewarding

Our game does not involve a complicated story but has a linear progres-

sion – the player will progress to the next level once the short term goal

in each level is achieved, and finally achieve the long-term goal to de-

stroy the final boss tank. The short term goals can be to destroy a number

of enemy tanks, to earn a target score, or to avoid being hit by enemy

tanks within limited time. The long-term goal can also be set based on

the ideas of the short term goals. For shooter games, an important design

principle is that “a player who shoots precisely should do better than one

who misses a lot” (Adams, 2009). Based on this principle, our game is

designed to reward the player’s performance with respect to the hit ratio,

the number of bullets, and the time used. The main reason of using the

linear progression layout is for the simplicity: we don’t want to spend

much time in the story design stage but on the OOP programming part.

For novice student programmers, other more sophisticated layout such as

parallel layout (where a variety of paths in lower levels can lead to an

upper level) is more challenging and prone to cause frustration.

3.3 Game AI

As we finish the work to identify the entities and their static properties as

stated in section 3.1, we focus on the behaviors of the entities here espe-

cially the enemy tanks. Their moving modes are illustrated in the finite

state machine (FSM) shown in Figure 5. Finite state machine is a model

of computation that can be used to represent a few states of the agent in a

game and their transitions under certain conditions. FSM is widely used

in computer game AI design, due to its simplicity and ease for prototyp-

ing.

Figure 5. Finite state machine representing the enemy tank’s behaviors

As shown in Figure 5, the enemy tank has four states (represented as

nodes in the graph): patrol, chase, load bullets, and fire. Invoked by

specific events, the entity can transit from a state to another, where tran-

sitions between states are represented as edges connecting the nodes. In

our case, the default moving mode of the enemy tank is patrolling. Once

the enemy tank sees the player tank, it will switch to the chasing mode –

it will adjust its moving direction and chase the player tank. If it has

bullets loaded, it turns its turret to fire at the player tank; otherwise, it

loads bullets first and then fire. The enemy tank will stop firing until the

player tank is destroyed or moves out of its firing scope.

In the above process, the events that invoke the state transitions are

detected at every game frame. As one of the most important events in

the game world, collisions in our game take place between the player

tank and enemy tanks, the tanks and obstacles, and the tanks and bullets.

The collision detection is based on the distance between two objects: if

the smallest distance is less than a threshold, a collision takes place and

invokes corresponding effects such as sparks and sounds. Here the

smallest distance is the minimum of the distances between the registra-

tion/key points (centers of red circles and/or green circles in Figure 6 - 9)

on each object. To reduce the computing cost, we can use a circle shell

The Development of a Game with Applications of Object-oriented Programming Concepts

11

centered at each object for a rough distance detection. Only when an

approximated collision happens, we do precise computations of key

point collisions. Figure 6 - 9 shows collisions between two tanks, a tank

and an obstacle (building), and tanks and shots, respectively.

Figure 6. Collision that take place between two tanks. An animation of

explosion on a damaged tank is invoked

Figure 7. A tank collides a building at a key point.

Figure 8. A collision between bullets and tanks.

Figure 9. A tank is hit by the laser beam.

In addition to the collision between regular bullets and tanks, there is

another type of collision takes place when a special weapon, laser beam,

is used. The enemy tank equipped with the laser weapon can fire a beam,

and the player tank will get damaged when any point is hit by the beam,

as illustrated in Figure 9. Although this collision appears different from

other collisions, the detection method is still the same, but with a differ-

ent visual effect invoked.

In order to increase the game varieties and add fun to the game play,

we involve random elements in this game. For example, when the player

or an enemy tank is hit by a regular bullet, there is a 50% of chance it

will be set on fire, and the fire will act like a debuff which will slowly

eat away HP at a rate of 2 points per second. Another example is the

variation of tank motion patterns. Some enemy tanks do not follow a

constant pattern of motion - they demonstrate different motion patterns

each time when you start the game. The purpose of this feature is to

make enemy less predictable therefore adding more uncertainty and fun

to the game. Player can play this game repeatedly and getting different

fights and results every time.

3.4 Visual effects

In this game we have designed a few visual effects. Some effects are

associated with special functions of tanks, such as energy shield and ice

bullet. Energy shield is designed to protect the player tank from enemy

attack. It can be deployed with a user key press and will last for a period

of protection time. It can be invoked again after it expires for a while

when cooled down. This design is also applied to the ice bullets. Ice

bullets are special ammo that can cause an enemy tank frozen for a few

seconds. Similar to energy shell, the ability to fire an ice bullets can only

last for short time and will recover later. In the game window the status

of these two special functions are visualized as state bars.

Figure 10. The effect of an energy shied protecting a tank from shots.

Figure 10 shows a tank protected by the blue energy shield from shots.

The top bar shows the recovery time for the next invoke of the energy

shield, and the lower bar shows the health status of the player tank. Fig-

ure 11 shows the effect of ice bullets. A tank is frozen and loses the

ability of moving and firing when hit by an ice bullet. It can resume its

Y. Huang et al. / American Journal of Advanced Research 2018 2(1) 7-13

12

regular status when the effect of ice bullet expires. The upper bar shows

the recovery time to invoke the next ice bullet. The plain red bar just

below the ice block, i.e. the hit enemy tank, shows its current health

status. The design of ice bullet is actually inspired from some RPG

games, where the avatar of the player may be frozen due to poison or

harm of weapons. To our knowledge, we have never found the frozen

function in previous shooter games. In this game, we build this function,

and we believe some features in other genres of games can also contrib-

ute to shooter games if incorporated with proper modifications.

Figure 11. An enemy tank is hit and frozen by an ice bullet fired from the

player tank.

Figure 12. Visual effects for bullet firing and hit.

Figure 13. Sprite sheets used for visual effect animations.

In addition to the above visual effects, there are effects invoked by bullet

firing and hit, such as muzzle, fire, and smoke trail, as shown in Figure

12. To implement these visual effects, we create a muzzle object and

allow it to animate. It is placed in front of the tank turret. In a similar

way, for the fire effect, we create a fire object and add it on top of the

turret and display the fire burning effect for 10 seconds and then fades

off. In order to simulate the trajectories of a bullet flying in the air, we

create a smoke object and animate it. To implement the animations of the

above objects, we define a function updateAppearance() in each class for

updating its appearance. At every game frame a sprite sheet is used, from

which the function updateAppearance() will fetch a small image. The

sprite sheets are shown in Figure 13.

4 Conclusion and Future Work

Learning object-oriented programming concepts is often a challenge

to CS students. How to teach these concepts in an effective way is also a

question for instructors. In this paper we introduce our experience of

teaching and learning OOP via a game development project. The OOP

concepts are associated with game objects and behaviors, making the

learning and teaching process effective and fun. In our future work, one

direction is to emphasize the training in OOP concepts using specific

game modules. Developing other genres of games is also possible. We

expect to explore more factors that affect the OOP study, and build a

more systematic method and apply it to undergraduate computer science

courses such as object-oriented programming or programming method-

ology.

Funding

This work has been supported by the Organized Research and Creative Activities

(ORCA) Program of University of Houston-Downtown.

Conflict of Interest: none declared.

References

Alfredo Martínez-Valdés, José & Velázquez-Iturbide, J. Ángel & Neira, Raquel.

(2017). A (Relatively) Unsatisfactory Experience of Use of Scratch in CS1. 1-

7. 10.1145/3144826.3145356.

Baranowski, T., Buday, R., Thompson, D., Lyons, E. J., Lu, A. S., & Baranowski,

J. (2013). Developing Games for Health Behavior Change: Getting Started.

Games For Health Journal, 2(4), 183–190.

http://doi.org/10.1089/g4h.2013.0048

Beck, K. and Cunningham, W. (1989). A laboratory for teaching object oriented

thinking. In Conference proceedings on Object-oriented programming systems,

languages and applications (OOPSLA '89). ACM, New York, NY, USA, 1-6.

Bjork, Staffan & Holopainen, Jussi (2005). Patterns in Game Design. Charles River

Media. p. 60. ISBN 1-58450-354-8.

Cooper, K. (Ed.), Scacchi, W. (Ed.). (2015). Computer Games and Software Engi-

neering. New York: Chapman and Hall/CRC.

Dathan, B. and Ramnath, S. (2015). Object-Oriented Analysis, Design and Imple-

mentation - An Integrated Approach. Springer.

Devore, Jordan (2015). Review: Nuclear Throne. Destructoid. December 27, 2015

Dijkstra, E. W. (1982). Selected Writings on Computing: A Personal Perspective.

Springer.

Ernest Adams. 2009. Fundamentals of Game Design (2nd ed.). New Riders Pub-

lishing, Thousand Oaks, CA, USA.

Ferguson, C. J. (2013). Violent video games and the Supreme Court. American

Psychologist, 68, 57–74. doi:10.1037/a0030597

Gentile, D.A. & Anderson, C. A. (2006). Video games. In N.J. Salkind (Ed.),

Encyclopedia of Human Development (Vol 3, pp. 1303-1307).

Glasser, M.(2009). Open Verification Methodology Cookbook. Springer.

http://doi.org/10.1089/g4h.2013.0048

The Development of a Game with Applications of Object-oriented Programming Concepts

13

Granic, I., Lobel, A., & Engels, R. C. M. E. (2014). The benefits of playing video

games. American Psychologist, 69(1), 66-78.

Kosa, M., Yilmaz, M., O'Connor, R., & Clarke, P.M. (2016). Software Engineering

Education and Games: A Systematic Literature Review. J. UCS, 22, 1558-

1574.

Reas, Casey and Fry, Ben (2014). Processing: A Programming Handbook for

Visual Designers, Second Edition. MIT Press. ISBN: 0-262-02828-X

Salen, Katie & Zimmerman, Eric (2004). Rules of Play: Game Design Fundamen-

tals. MIT Press. ISBN 0-262-24045-9.

Savitch, Walter (2003). Absolute Java. Pearson Addison Wesley.

Thompson, D. (2012). Designing Serious Video Games for Health Behavior

Change: Current Status and Future Directions. Journal of Diabetes Science and

Technology, 6(4), 807–811.

Wolz, Ursula & H. Leitner, Henry & Malan, David & Maloney, John. (2009).

Starting with scratch in CS 1. ACM SIGCSE Bulletin. 41. 2-3.

10.1145/1508865.1508869.

	1 Introduction
	2 Background
	2.1 Motivation
	2.2 Related work
	2.3 Development Tool

	3 Game Design and Implementation
	3.1 Object-oriented thinking and implementation
	3.2 Game rewarding
	3.3 Game AI
	3.4 Visual effects

	4 Conclusion and Future Work
	Funding
	References

